7 resultados para PITU 2025

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2000 a Review of Current Marine Observations in relation to present and future needs was undertaken by the Inter-Agency Committee for Marine Science and Technology (IACMST). The Marine Environmental Change Network (MECN) was initiated in 2002 as a direct response to the recommendations of the report. A key part of the current phase of the MECN is to ensure that information from the network is provided to policy makers and other end-users to enable them to produce more accurate assessments of ecosystem state and gain a clearer understanding of factors influencing change in marine ecosystems. The MECN holds workshops on an annual basis, bringing together partners maintaining time-series and long-term datasets as well as end-users interested in outputs from the network. It was decided that the first workshop of the MECN continuation phase should consist of an evaluation of the time series and data sets maintained by partners in the MECN with regard to their ‘fit for purpose’ for answering key science questions and informing policy development. This report is based on the outcomes of the workshop. Section one of the report contains a brief introduction to monitoring, time series and long-term datasets. The various terms are defined and the need for MECN type data to complement compliance monitoring programmes is discussed. Outlines are also given of initiatives such as the United Kingdom Marine Monitoring and Assessment Strategy (UKMMAS) and Oceans 2025. Section two contains detailed information for each of the MECN time series / long-term datasets including information on scientific outputs and current objectives. This information is mainly based on the presentations given at the workshop and therefore follows a format whereby the following headings are addressed: Origin of time series including original objectives; current objectives; policy relevance; products (advice, publications, science and society). Section three consists of comments made by the review panel concerning all the time series and the network. Needs or issues highlighted by the panel with regard to the future of long-term datasets and time-series in the UK are shown along with advice and potential solutions where offered. The recommendations are divided into 4 categories; ‘The MECN and end-user requirements’; ‘Procedures & protocols’; ‘Securing data series’ and ‘Future developments’. Ever since marine environmental protection issues really came to the fore in the 1960s, it has been recognised that there is a requirement for a suitable evidence base on environmental change in order to support policy and management for UK waters. Section four gives a brief summary of the development of marine policy in the UK along with comments on the availability and necessity of long-term marine observations for the implementation of this policy. Policy relating to three main areas is discussed; Marine Conservation (protecting biodiversity and marine ecosystems); Marine Pollution and Fisheries. The conclusion of this section is that there has always been a specific requirement for information on long-term change in marine ecosystems around the UK in order to address concerns over pollution, fishing and general conservation. It is now imperative that this need is addressed in order for the UK to be able to fulfil its policy commitments and manage marine ecosystems in the light of climate change and other factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-latitude seas are mostly covered by multi-year ice, which impacts processes of primary production and sedimentation of organic matter. Because of the warming effect of West Spitsbergen Current (WSC), the waters off West Spitsbergen have only winter ice cover. That is uncommon for such a high latitude and enables to separate effects of multiyear-ice cover from the latitudinal patterns. Macrofauna was sampled off Kongsfjord (79°N) along the depth gradient from 300 to 3000 m. The density, biomass and diversity at shallow sites situated in a canyon were very variable. Biomass was negatively correlated with depth (R=-0.86R=-0.86, p<0.001), and ranged from 61 g ww m−2 (212 m) to 1 g ww m−2 (2025 m). The biomasses were much higher than in the multiyear-ice covered High Arctic at similar depths, while resembling those from temperate and tropical localities. Species richness (expressed by number of species per sample and species–area accumulation curves) decreased with depth. There was no clear depth-related pattern in diversity measures: Hurbert rarefaction, Shannon–Wiener or Pielou. The classic increase of species richness and diversity with depth was not observed. Species richness and diversity of deep-sea macrofauna were much lower in our study than in comparable studies of temperate North Atlantic localities. That is related to geographic isolation of Greenland–Icelandic–Norwegian (GIN) seas from the Atlantic pool of species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystems provide a range of goods and services that contribute toward human well-being through the environmental, economic, and cultural benefits they provide. Although the importance of these services is increasingly being recognized by governments, our understanding of the implications of different energy technologies on the provision of these services is limited. The chapter presents an assessment of four key energy technologies that considers the ecosystem services impacts across the entire lifecycle. In demonstrating the global implications of these energy technologies, the chapter makes the case that assessment of UK energy policy must consider a broad range of environmental and societal indicators both within the UK and overseas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20–25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC–temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20–25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC–temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.