18 resultados para Over the counter derivatives
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The crescent shaped Mascarene Plateau (southwestern Indian Ocean), some 2200 km in length, forms a partial barrier to the (predominantly westward) flow of the South Equatorial Current. Shallow areas of the Mascarene Plateau effectively form a large shelf sea without an associated coastline. Zooplankton sampling transects were made across the plateau and also the basin to the west, to investigate the role the partial interruption of flow has on zooplankton biomass and community structure over the region. Biomass data from Optical Plankton Counter (OPC) analysis, and variability in community structure from taxonomic analysis, appear to indicate that the obstruction by the plateau causes upwelling, nutrient enrichment and enhanced chlorophyll and secondary production levels downstream. The Mascarene Basin is clearly distinguishable from the ridge itself, and from the waters to the south and north, both in terms of size-distributed zooplankton biomass and community structure. Satellite remote sensing data, particularly remotely-sensed ocean colour imagery and the sea surface height anomaly (SSHA), indicate support for this hypothesis. A correlation was found between OPC biovolume and SSHA and sea surface temperature (SST), which may indicate the physical processes driving mesozooplankton variability in this area. Biomass values away from the influence of the ridge averaged 24 mg m-3, but downstream if the ridge biomass averaged 263 mg m-3. Copepods comprised 60% of the mean total organisms. Calanoid copepods varied considerably between regions, being lowest away from the influence of the plateau, where higher numbers of the cyclopoid copepods Oithona spp., Corycaeus spp. and Oncaea spp., and the harpacticoid Microsetella spp. were found.
Resumo:
In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a similar to 10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at similar to 5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.
Resumo:
In the mid-1980s the North Sea ecosystem experienced a climate-induced regime shift that has favoured decapods and detritivores in the benthos and jellyfish in the plankton over commercial fisheries. Here, we investigate changes among the Decapoda in the North Sea plankton over the last 60 yr. Decapods are important predators in the plankton and the benthos where they can influence productivity and structure communities. In the North Sea it has been suggested that a climate-driven increase in decapod abundance has been important in propagating the climate signal through the North Sea food web. We show that climate-induced changes in the Decapoda in the central and southern North Sea include the presence of new warm-water taxa, changes in the abundance and proportions of commercial species of shrimp, and an earlier occurrence of decapod larvae in the plankton compared with the period 1981–1983. Notable amongst the warm-water taxa appearing in the North Sea is the predatory swimming crab Polybius henslowii that can swarm in large numbers when conditions are favourable and that is known to exhibit range shifts in response to fluctuations in hydroclimatic forcing. We suggest that climate-induced changes among North Sea decapods have played an important role in the trophic amplification of a climate signal and the development of the new North Sea dynamic regime. Understanding these changes is likely to be imperative for a successful ecosystem-based approach to the future management of North Sea fisheries at a time of climate change.
Resumo:
Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory(PPAO) near Plymouth, United Kingdom between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near the Plymouth Sound. New International Maritime Organization (IMO) regulation came into force in January 2015 to reduce sulfur emissions tenfold in Sulfur Emission Control Areas such as the English Channel. Our observations suggest a three-fold reduction from 2014 to 2015 in ship-emitted SO2 from that direction. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plum es show a high level of compliance to the IMO regulation (> 95 %) in both years. Dimethylsulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from ~ 1/3 in 2014 to ~ 1/2 in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.