60 resultados para Oceanographic research stations.

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigates the oceanic behavior of the lithogenic trace elements Al and Ti in the upper 200 m of the Atlantic Ocean. The distribution of both metals in the dissolved and particulate phases was assessed along an E-W transect in the eastern tropical North Atlantic (December 2009) and along a meridional Atlantic transect (April-May 2010). The surface water concentrations of particulate and dissolved Al and Ti reflected the previously observed pattern of atmospheric inputs into the Atlantic Ocean. Subsurface minima at stations with pronounced fluorescence maxima were observed, suggesting a link between biological productivity and the removal of both dissolved and particulate Al and Ti. This may include uptake mechanisms, adsorption and aggregation processes on biogenic particle surfaces and the formation of large, fast sinking biogenic particles, e.g., fecal pellets. Residence times in the upper water column (100 m) of the tropical and subtropical North Atlantic were estimated to range in the order of days to weeks in the particulate phases (Al: 3-22 days, Ti: 4-37 days) and were 0.9-3.8 years for Al and 10-31 years for Ti in the dissolved phases. Longer residence times in both phases in the South Atlantic are consistent with lower biological productivity and decreased removal rates. In the upper water column, Al was predominantly present in the dissolved form, whereas Ti mostly occurred in the particulate form. Largest deviations in the partition coefficients between the particulate and dissolved phases were found in the surface waters, together with excess dissolved Al over Ti compared to the crustal source. This likely reflects elevated dissolution of Al compared to Ti from atmospheric mineral particles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The composition and distribution of phytoplankton assemblages around the tip of the Antarctic Peninsula were studied during two summer cruises (February/March 2008 and 2009). Water samples were collected for HPLC/CHEMTAX pigment and microscopic analysis. A great spatial variability in chlorophyll a (Chl a) was observed in the study area: highest levels in the vicinity of the James Ross Island (exceeding 7 mg m−3 in 2009), intermediate values (0.5 to 2 mg m−3) in the Bransfield Strait, and low concentrations in the Weddell Sea and Drake Passage (below 0.5 mg m−3). Phytoplankton assemblages were generally dominated by diatoms, especially at coastal stations with high Chl a concentration, where diatom contribution was above 90% of total Chl a. Nanoflagellates, such as cryptophytes and/or Phaeocystis antarctica, replaced diatoms in open-ocean areas (e.g., Weddell Sea). Many species of peridinin-lacking autotrophic dinoflagellates (e.g., Gymnodinium spp.) were also important to total Chl a biomass at well-stratified stations of Bransfield Strait. Generally, water column structure was the most important environmental factor determining phytoplankton communities’ biomass and distribution. The HPLC pigment data also allowed the assessment of different physiological responses of phytoplankton to ambient light variation. The present study provides new insights about the dynamics of phytoplankton in an undersampled region of the Southern Ocean highly susceptible to global climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Nazaré Canyon on the Portuguese Margin (NE Atlantic) was sampled during spring-summer for three consecutive years (2005–2007), permitting the first inter-annual study of the meiofaunal communities at the Iberian Margin at two abyssal depths (~3500 m and ~4400 m). Using new and already published data, the meiofauna standing stocks (abundance and biomass) and nematode structural and functional diversity were investigated in relation to the sediment biogeochemistry (e.g. organic carbon, nitrogen, chlorophyll a, phaeopigments) and grain size. A conspicuous increase in sand content from 2005 to 2006 and decrease of phytodetritus at both sites, suggested the occurrence of one or more physical disturbance events. Nematode standing stocks and trophic diversity decreased after these events, seemingly followed by a recovery/recolonisation period in 2007, which was strongly correlated with an increase in the quantity and bioavailability of phytodetrital organic matter supplied. Changes in meiofauna assemblages, however, also differed between stations, likely because of the contrasting hydrodynamic and food supply conditions. Higher meiofauna and nematode abundances, biomass and trophic complexity were found at the shallowest canyon station, where the quantity, quality and bioavailability of food material were higher than at the deeper site. The present results suggest that even though inter-annual variations in the sedimentary environment can regulate the meiofauna in the abyssal Nazaré Canyon, heterogeneity between sampling locations in the canyon were more pronounced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Continuous Plankton Recorder (CPR) survey has collected data on basin- scale zooplankton abundance in the North Atlantic since the 1930s. These data have been used in many studies to elucidate seasonal patterns and long-term change in plankton populations, as well as more recently to validate ecosystem models. There has, however, been relatively little comparison of the data from the CPR with that from other samplers. In this study we compare zooplankton abundance estimated from the CPR in the northeast Atlantic with near-surface samples collected by a Longhurst-Hardy Plankton Recorder (LHPR) at Ocean Weather Station India (59 degree N, 19 degree W) between 1971 and 1975. Comparisons were made for six common copepods in the region: Acartia clausi, Calanus finmarchicus, Euchaeta norvegica, Metridia lucens, Oithona sp. and Pleuromamma robusta. Seasonal cycles based on CPR data were similar to those recorded by the LHPR. Differences in absolute abundances were apparent, however, with the CPR underestimating abundances by a factor of between 5 and 40, with the exception of A. clausi. Active avoidance by zooplankton is thought to be responsible. This avoidance is species specific, so that care must be taken describing communities, as the CPR emphasises those species that are preferentially caught, a problem common to many plankton samplers.

Relevância:

80.00% 80.00%

Publicador: