470 resultados para Ocean fronts
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The heterogeneity in phytoplankton production in the North Atlantic after the spring bloom is poorly understood. We analysed merged microwave and infrared satellite sea surface temperature (SST) data and ocean colour phytoplankton size class biomass, primary production (PP) and new production (ExP) derived from SeaWiFS data, to assess the spatial and temporal frequency of surface thermal fronts and areas of enhanced PP and ExP. Strong and persistent surface thermal fronts occurred at the Reykjanes Ridge (RR) and sub-polar front (SPF), which sustain high PP and ExP and, outside of the spring bloom, account for 9% and 15% of the total production in the North Atlantic. When normalised by area, PP at the SPF is four times higher than the RR. Analysis of 13 years of satellite ocean colour data from SeaWiFS, and compared with MODIS-Aqua and MERIS, showed that there was no increase in Chla from 1998 to 2002, which then decreased in all areas from 2002 to 2007 and was most pronounced in the RR. These time series also illustrated that the SPF exhibited the highest PP and the lowest variation in Chla over the ocean colour record. This implies that the SPF provides a high and consistent supply of carbon to the benthos irrespective of fluctuations in the North Atlantic Oscillation.
Resumo:
Frequent locations of thermal fronts in UK shelf seas were identified using an archive of 30,000 satellite images acquired between 1999 and 2008, and applied as a proxy for pelagic diversity in the designation of Marine Protected Areas (MPAs). Networks of MPAs are required for conservation of critical marine habitats within Europe, and there are similar initiatives worldwide. Many pelagic biodiversity hotspots are related to fronts, for example cetaceans and basking sharks around the Isle of Man, Hebrides and Cornwall, and hence remote sensing can address this policy need in regions with insufficient species distribution data. This is the first study of UK Continental Shelf front locations to use a 10-year archive of full-resolution (1.1 km) AVHRR data, revealing new aspects of their spatial and seasonal variability. Frontal locations determined at sea or predicted by ocean models agreed closely with the new frequent front maps, which also identified many additional frontal zones. These front maps were among the most widely used datasets in the recommendation of UK MPAs, and would be applicable to other geographic regions and to other policy drivers such as facilitating the deployment of offshore renewable energy devices with minimal environmental impact.
Resumo:
Front detection and aggregation techniques were applied to 300m resolution MERIS satellite ocean colour data for the first time, to describe frequently occurring shelf-sea fronts near to the Scottish coast. Medium resolution (1km) thermal and colour data have previously been used to analyse the distribution of surface fronts, though these cannot capture smaller frontal zones or those in close proximity to the coast, particularly where the coastline is convoluted. Seasonal frequent front maps, derived from both chlorophyll and SST data, revealed a number of key frontal zones, a subset of which were based on new insights into the sediment and plankton dynamics provided exclusively by the higher-resolution chlorophyll fronts. The methodology is described for applying colour and thermal front data to the task of identifying zones of ecological importance that could assist the process of defining marine protected areas. Each key frontal zone is analysed to describe its spatial and temporal extent and variability, and possible mechanisms. It is hoped that these tools can provide guidance on the dynamic habitats of marine fauna towards aspects of marine spatial planning and conservation.
Resumo:
Front detection and aggregation techniques were applied to 300m resolution MERIS satellite ocean colour data for the first time, to describe frequently occurring shelf-sea fronts near to the Scottish coast. Medium resolution (1km) thermal and colour data have previously been used to analyse the distribution of surface fronts, though these cannot capture smaller frontal zones or those in close proximity to the coast, particularly where the coastline is convoluted. Seasonal frequent front maps, derived from both chlorophyll and SST data, revealed a number of key frontal zones, a subset of which were based on new insights into the sediment and plankton dynamics provided exclusively by the higher-resolution chlorophyll fronts. The methodology is described for applying colour and thermal front data to the task of identifying zones of ecological importance that could assist the process of defining marine protected areas. Each key frontal zone is analysed to describe its spatial and temporal extent and variability, and possible mechanisms. It is hoped that these tools can provide guidance on the dynamic habitats of marine fauna towards aspects of marine spatial planning and conservation.
Resumo:
Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat ‘hotspots’ of high space use. Movement modelling showed sharks preferred habitats characterised by strong sea-surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge south-west of the Azores. In these main regions, and sub-areas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently ‘tracks’ oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries.
Resumo:
A guide compiled as an aid to researchers in the identification of the coastal and shallow water, south-western Indian Ocean pelagic zooplankton, as much of the identification literature covering this area of amazing biodiversity is currently spread through the scientific literature and not accessible without extensive library resources. Most zooplankton groups, except fish larvae and eggs, have been covered, but some specialist groups have not yet been dealt with in great detail. However, a selection of representative members of most groups have been given, so that organisms can at least be assigned to perhaps a particular genus within the main group. The species list is based on zooplankton sampling carried out round the coastal areas of the islands of Mahé and Aldabra (Seychelles), Rodrigues (Mauritius), Madagascar and from a sampling transect between Seychelles and Rodrigues. The guide therefore includes a high proportion of the island-coastal and surface water zooplankton of the whole Indian Ocean. The location where a particular species has been sampled has been noted and some species that have not been sampled, but are known to occur in the region, have been included. Comprehensive taxonomic information has not been presented, but sufficient information should be given to identify each species. Keys have not yet been included for genera, as further species will be added. A bibliography of relevant plankton references has also been included.
Resumo:
The crescent shaped Mascarene Plateau (southwestern Indian Ocean), some 2200 km in length, forms a partial barrier to the (predominantly westward) flow of the South Equatorial Current. Shallow areas of the Mascarene Plateau effectively form a large shelf sea without an associated coastline. Zooplankton sampling transects were made across the plateau and also the basin to the west, to investigate the role the partial interruption of flow has on zooplankton biomass and community structure over the region. Biomass data from Optical Plankton Counter (OPC) analysis, and variability in community structure from taxonomic analysis, appear to indicate that the obstruction by the plateau causes upwelling, nutrient enrichment and enhanced chlorophyll and secondary production levels downstream. The Mascarene Basin is clearly distinguishable from the ridge itself, and from the waters to the south and north, both in terms of size-distributed zooplankton biomass and community structure. Satellite remote sensing data, particularly remotely-sensed ocean colour imagery and the sea surface height anomaly (SSHA), indicate support for this hypothesis. A correlation was found between OPC biovolume and SSHA and sea surface temperature (SST), which may indicate the physical processes driving mesozooplankton variability in this area. Biomass values away from the influence of the ridge averaged 24 mg m-3, but downstream if the ridge biomass averaged 263 mg m-3. Copepods comprised 60% of the mean total organisms. Calanoid copepods varied considerably between regions, being lowest away from the influence of the plateau, where higher numbers of the cyclopoid copepods Oithona spp., Corycaeus spp. and Oncaea spp., and the harpacticoid Microsetella spp. were found.
Resumo:
Long-term changes in the plankton of the North Sea are investigated using data from the continuous plankton recorder (CPR) survey. During the last 4 decades, there appears to have been 2 large anomalous periods within the plankton data set, one that occurred in the late 1970s and the other in the late 1980s. These anomalous periods seem to be largely synchronous with unusual ocean climate conditions that have occurred episodically over a timescale of decades. The unusual ocean climate conditions prevailing at these 2 time periods appear to contain important hydrographical elements that involve oceanic incursions into the North Sea. This paper, using data from the CPR survey and providing evidence from other studies, focuses on the relationship between the long-term changes in the biology of the North Sea and these 2 exceptional hydro-climatic events. Here, we suggest that while atmospheric variability and associated changes in regional temperatures have a dominant effect on the marine environment, oceanic influences on the ecology of a semi-closed environment such as the North Sea may have been underestimated in the past.
Resumo:
Habitat selection processes in highly migratory animals such as sharks and whales are important to understand because they influence patterns of distribution, availability and therefore catch rates. However, spatial strategies remain poorly understood over seasonal scales in most species, including, most notably, the plankton-feeding basking shark Cetorhinus maximus. It was proposed nearly 50 yr ago that this globally distributed species migrates from coastal summer-feeding areas of the northeast Atlantic to hibernate during winter in deep water on the bottom of continental-shelf slopes. This view has perpetuated in the literature even though the 'hibernation theory' has not been tested directly. We have now tracked basking sharks for the first time over seasonal scales (1.7 to 6.5 mo) using 'pop-up' satellite archival transmitters. We show that they do not hibernate during winter but instead undertake extensive horizontal (up to 3400 km) and vertical (> 750 m depth) movements to utilise productive continental-shelf and shelf-edge habitats during summer, autumn and winter. They travel long distances (390 to 460 km) to locate temporally discrete productivity 'hotspots' at shelf-break fronts, but at no time were prolonged movements into open-ocean regions away from shelf waters observed. Basking sharks have a very broad vertical diving range and can dive beyond the known range of planktivorous whales. Our study suggests this species can exploit shelf and slope-associated zooplankton communities in mesopelagic (200 to 1000 m) as well as epipelagic habitat (0 to 200 m).
Resumo:
Sampling by the continuous plankton recorder (CPR) survey over the North Atlantic Ocean and the North Sea has enabled long-term studies of phytoplankton biomass. Analysis of an index of phytoplankton biomass, the phytoplankton colour index (PCI), has previously shown an increase in phytoplankton biomass in the NE Atlantic. In the current study, further investigations were conducted to determine the contribution of diatom and dinoflagellate cell counts to the PCI, their fluctuations over the last 45 yr and their geographical variations in the eastern North Atlantic and the North Sea. An increased contribution of dinoflagellates to the PCI was revealed over the south NE Atlantic and the northern North Sea. In contrast, the contribution of diatoms decreased in the north NE Atlantic and the northern North Sea. No discernible trends were found in the other regions of the North Sea. The relative contributions of diatoms and dinoflagellates to the PCI led to the identification of 3 geographically distinct dynamic regimes in the diatom/dinoflagellate dynamics in the NE Atlantic and the North Sea. Finally, it is stressed that the discrepancy observed in the patterns of PCI and diatom and dinoflagellate cell counts suggests that changes in PCI do not reflect changes in the community structure and that the exclusive use of PCI is not adequate to investigate the long-term trends in the trophic link between phytoplankton and herbivorous zooplankton.
Resumo:
The Continuous Plankton Recorder Survey has operated in the North Atlantic and North Sea since 1931, providing a unitque multi-decadal dataset of plankton abundance. Over the period since 1931 technology has advanced and the system for storing the CPR data has developed considerably. From 1969 an electronic database was developed to store the results of CPR analysis. Since that time the CPR database has undergone a number of changes due to performance related factors such as processor speed and disk capacity as well as economic factors such as the cost of software. These issues have been overcome and the system for storing and retrieving the data has become more user friendly at every development stage.