1 resultado para Object Oriented Analysis
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Filtro por publicador
- Repository Napier (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (23)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (11)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Boston University Digital Common (11)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (19)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (29)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (35)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (3)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (10)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (19)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (20)
- Indian Institute of Science - Bangalore - Índia (27)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (8)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (22)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (132)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (11)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (3)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (79)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (3)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (37)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (17)
- Universidade Metodista de São Paulo (5)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Montréal, Canada (21)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (3)
- University of Queensland eSpace - Australia (26)
- University of Southampton, United Kingdom (7)
- University of Washington (1)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (5)
Resumo:
Noise is one of the main factors degrading the quality of original multichannel remote sensing data and its presence influences classification efficiency, object detection, etc. Thus, pre-filtering is often used to remove noise and improve the solving of final tasks of multichannel remote sensing. Recent studies indicate that a classical model of additive noise is not adequate enough for images formed by modern multichannel sensors operating in visible and infrared bands. However, this fact is often ignored by researchers designing noise removal methods and algorithms. Because of this, we focus on the classification of multichannel remote sensing images in the case of signal-dependent noise present in component images. Three approaches to filtering of multichannel images for the considered noise model are analysed, all based on discrete cosine transform in blocks. The study is carried out not only in terms of conventional efficiency metrics used in filtering (MSE) but also in terms of multichannel data classification accuracy (probability of correct classification, confusion matrix). The proposed classification system combines the pre-processing stage where a DCT-based filter processes the blocks of the multichannel remote sensing image and the classification stage. Two modern classifiers are employed, radial basis function neural network and support vector machines. Simulations are carried out for three-channel image of Landsat TM sensor. Different cases of learning are considered: using noise-free samples of the test multichannel image, the noisy multichannel image and the pre-filtered one. It is shown that the use of the pre-filtered image for training produces better classification in comparison to the case of learning for the noisy image. It is demonstrated that the best results for both groups of quantitative criteria are provided if a proposed 3D discrete cosine transform filter equipped by variance stabilizing transform is applied. The classification results obtained for data pre-filtered in different ways are in agreement for both considered classifiers. Comparison of classifier performance is carried out as well. The radial basis neural network classifier is less sensitive to noise in original images, but after pre-filtering the performance of both classifiers is approximately the same.