5 resultados para OXIDASE I
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
We present a macrogeographic study of spatial heterogeneity in an important subarctic Pacific copepod and describe the first genetic analysis of population structure using Continuous Plankton Recorder (CPR) samples. Samples of Neocalanus cristatus were collected at a constant depth of similar to 7 m from two CPR tow-routes, (i) an east-west similar to 6500-km transect from Vancouver Island, Canada to Hokkaido Island, Japan, and (ii) a north-south transect of similar to 2250 km from Anchorage, Alaska to Tacoma, Washington. Analysis of these samples revealed three features of the biology of N. cristatus. First, N. cristatus undergoes small-scale diel vertical migration that is larger among stages CV- adult (3-6 times more abundant at 7 m at night), than stages CI-CIV (only 2-4 times higher at night). Secondly, while there were no regions where N. cristatus did not appear, each transect sampled a few large-scale macrogeographic patches. Thirdly, an analysis of molecular variation, using a partial sequence of the N. cristatus cytochrome oxidase I gene, revealed that 7.3% (P < 0.0001) of the total genetic variation among N. cristatus sampled from macrogeographic patches by the CPR could be explained by spatial heterogeneity. We suggest that spatial heterogeneity at macrogeographic scales may be important in plankton evolution.
Resumo:
DNA barcoding offers an efficient way to determine species identification and to measure biodiversity. For dinoflagellates, an ancient alveolate group of about 2000 described extant species, DNA barcoding studies have revealed large amounts of unrecognized species diversity, most of which is not represented in culture collections. To date, two mitochondrial gene markers, Cytochrome Oxidase I (COI) and Cytochrome b oxidase (COB), have been used to assess DNA barcoding in dinoflagellates, and both failed to amplify all taxa and suffered from low resolution. Nevertheless, both genes yielded many examples of morphospecies showing cryptic speciation and morphologically distinct named species being genetically similar, highlighting the need for a common marker. For example, a large number of cultured Symbiodinium strains have neither taxonomic identification, nor a common measure of diversity that can be used to compare this genus to other dinoflagellates.
Resumo:
Acartia and Paracartia species, often known to co-occur, can exhibit complex life cycles, including the production of resting eggs. Studying and understanding their population dynamics is hindered by the inability to identify eggs and early developmental stages using morphological techniques. We have developed a simple molecular technique to distinguish between the three species of the Acartiidae family (Acartia clausi, A. discaudata and Paracartia grani) that co-occur in the Thau lagoon (43�250N; 03�400E) in southern France. Direct amplification of a partial region of the mitochondrial cytochrome oxidase I gene by polymerase chain reaction and subsequent restriction fragment length polymorphism results in a unique restriction profile for each species. The technique is capable of determining the identity of individual eggs, including resting eggs retrieved from sediment samples, illustrating its application in facilitating population dynamic studies of this ubiquitous and important member of the zooplankton community.
Resumo:
Skates and rays constitute the most speciose group of chondrichthyan fishes, yet are characterised by remarkable levels of morphological and ecological conservatism. They can be challenging to identify, which makes monitoring species compositions for fisheries management purposes problematic. Owing to their slow growth and low fecundity, skates are vulnerable to exploitation and species exhibiting endemism or limited ranges are considered to be the most at risk. The Madeira skate Raja maderensis is endemic and classified as ‘Data Deficient’ by the IUCN, yet its taxonomic distinctiveness from the morphologically similar and more wide-ranging thornback ray Raja clavata is unresolved. This study evaluated the sequence divergence of both the variable control region and cytochrome oxidase I ‘DNA barcode’ gene of the mitochondrial genome to elucidate the genetic differentiation of specimens identified as R. maderensis and R. clavata collected across much of their geographic ranges. Genetic evidence was insufficient to support the different species designations. However regardless of putative species identification, individuals occupying waters around the Azores and North African Seamounts represent an evolutionarily significant unit worthy of special consideration for conservation management.
Resumo:
Skates and rays constitute the most speciose group of chondrichthyan fishes, yet are characterised by remarkable levels of morphological and ecological conservatism. They can be challenging to identify, which makes monitoring species compositions for fisheries management purposes problematic. Owing to their slow growth and low fecundity, skates are vulnerable to exploitation and species exhibiting endemism or limited ranges are considered to be the most at risk. The Madeira skate Raja maderensis is endemic and classified as ‘Data Deficient’ by the IUCN, yet its taxonomic distinctiveness from the morphologically similar and more wide-ranging thornback ray Raja clavata is unresolved. This study evaluated the sequence divergence of both the variable control region and cytochrome oxidase I ‘DNA barcode’ gene of the mitochondrial genome to elucidate the genetic differentiation of specimens identified as R. maderensis and R. clavata collected across much of their geographic ranges. Genetic evidence was insufficient to support the different species designations. However regardless of putative species identification, individuals occupying waters around the Azores and North African Seamounts represent an evolutionarily significant unit worthy of special consideration for conservation management.