10 resultados para North East China Transect
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Determining the habitat use of mobile marine species is important for understanding responses to climate change and aids the implementation of management and conservation measures. Inference of preferred habitat use has been greatly improved by combining satellite-based oceanographic data with animal tracking techniques. Although there have been several satellite-tracking studies on ocean sunfish Mola mola, limited information is available about either horizontal or vertical environmental preferences. In this study, both geographical movements and diving behaviour of ocean sunfish were explored together with the environmental factors influencing this species’ space use in the north-east Atlantic.
Resumo:
Determining the habitat use of mobile marine species is important for understanding responses to climate change and aids the implementation of management and conservation measures. Inference of preferred habitat use has been greatly improved by combining satellite-based oceanographic data with animal tracking techniques. Although there have been several satellite-tracking studies on ocean sunfish Mola mola, limited information is available about either horizontal or vertical environmental preferences. In this study, both geographical movements and diving behaviour of ocean sunfish were explored together with the environmental factors influencing this species’ space use in the north-east Atlantic.
Resumo:
Physical disturbance through wave action is a major determinant of kelp forest structure. The North-east Atlantic storm season of 2013–14 was unusually severe; the south coast of the UK was subjected to 6 of the 12 most intense storms recorded in the past 5 years. Inshore significant wave heights and periods exceeded 7 m and 13 s with two storms classified as ‘1-in-30 year’ events. We examined the impacts of the storm season on kelp canopies at three study sites. Monospecific canopies comprising Laminaria hyperborea were unaffected by storm disturbance. However, at one study site a mixed canopy comprising Laminaria ochroleuca, Saccharina latissima and L. hyperborea was significantly altered by the storms, due to decreased abundances of the former two species. Quantification of freshly severed stipes suggested that the ‘warm water’ kelp L. ochroleuca was more susceptible to storm damage than L. hyperborea. Overall, kelp canopies were highly resistant to storm disturbance because of the low vulnerability of L. hyperborea to intense wave action. However, if climate-driven shifts in kelp species distributions result in more mixed canopies, as predicted, then resistance to storm disturbance may be eroded.
Resumo:
Physical disturbance through wave action is a major determinant of kelp forest structure. The North-east Atlantic storm season of 2013–14 was unusually severe; the south coast of the UK was subjected to 6 of the 12 most intense storms recorded in the past 5 years. Inshore significant wave heights and periods exceeded 7 m and 13 s with two storms classified as ‘1-in-30 year’ events. We examined the impacts of the storm season on kelp canopies at three study sites. Monospecific canopies comprising Laminaria hyperborea were unaffected by storm disturbance. However, at one study site a mixed canopy comprising Laminaria ochroleuca, Saccharina latissima and L. hyperborea was significantly altered by the storms, due to decreased abundances of the former two species. Quantification of freshly severed stipes suggested that the ‘warm water’ kelp L. ochroleuca was more susceptible to storm damage than L. hyperborea. Overall, kelp canopies were highly resistant to storm disturbance because of the low vulnerability of L. hyperborea to intense wave action. However, if climate-driven shifts in kelp species distributions result in more mixed canopies, as predicted, then resistance to storm disturbance may be eroded.
Resumo:
The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.
Resumo:
The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.
Resumo:
Cuttlefish are currently the highest yielding cephalopod group harvested in the north-east Atlantic. English Channel cuttlefish show seasonal migrations to and from deep offshore wintering grounds, which results in a large number of smaller cuttlefish within the offshore stocks, some of which are caught by trawlers. Discarding small cuttlefish from trawls may give them the opportunity to migrate inshore and spawn, but only if they survive. This study examined survival rates of small (<15-cm dorsal mantle length) cuttlefish caught on board a commercial beam trawler. Overall, 31% of the small cuttlefish caught remained alive by the time they reached the sorting table (immediate survival rate). This survival rate dropped to 16% after specimens were subsequently held in an on-board aquarium system for up to 72 h (short-term survival rate). Measures that reduce the capture of small cuttlefish in the first place and/or increase their survival could potentially benefit the stocks.
Resumo:
Cuttlefish are currently the highest yielding cephalopod group harvested in the north-east Atlantic. English Channel cuttlefish show seasonal migrations to and from deep offshore wintering grounds, which results in a large number of smaller cuttlefish within the offshore stocks, some of which are caught by trawlers. Discarding small cuttlefish from trawls may give them the opportunity to migrate inshore and spawn, but only if they survive. This study examined survival rates of small (<15-cm dorsal mantle length) cuttlefish caught on board a commercial beam trawler. Overall, 31% of the small cuttlefish caught remained alive by the time they reached the sorting table (immediate survival rate). This survival rate dropped to 16% after specimens were subsequently held in an on-board aquarium system for up to 72 h (short-term survival rate). Measures that reduce the capture of small cuttlefish in the first place and/or increase their survival could potentially benefit the stocks.
Resumo:
Growing evidence has shown a profound modification of plankton communities of the North East Atlantic and adjacent seas over the past decades. This drastic change has been attributed to a modification of the environmental conditions that regulate the dynamics and the spatial distribution of ectothermic species in the ocean. Recently, several studies have highlighted modifications of the regional climate station L4 (50° 15.00′N, 4° 13.02′W) in the Western English Channel. We here focus on the modification of the plankton community by studying the long-term, annual and seasonal changes of five zooplankton groups and eight copepod genera. We detail the main composition and the phenology of the plankton communities during four climatic periods identified at the L4 station: 1988–1994, 1995–2000, 2001–2007 and 2008–2012. Our results show that long-term environmental changes underlined by Molinero et al. (2013) drive a profound restructuration of the plankton community modifying the phenology and the dominance of key planktonic groups including fish larvae. Consequently, the slow but deep modifications detected in the plankton community highlight a climate driven ecosystem shift in the Western English Channel.
Resumo:
Growing evidence has shown a profound modification of plankton communities of the North East Atlantic and adjacent seas over the past decades. This drastic change has been attributed to a modification of the environmental conditions that regulate the dynamics and the spatial distribution of ectothermic species in the ocean. Recently, several studies have highlighted modifications of the regional climate station L4 (50° 15.00′N, 4° 13.02′W) in the Western English Channel. We here focus on the modification of the plankton community by studying the long-term, annual and seasonal changes of five zooplankton groups and eight copepod genera. We detail the main composition and the phenology of the plankton communities during four climatic periods identified at the L4 station: 1988–1994, 1995–2000, 2001–2007 and 2008–2012. Our results show that long-term environmental changes underlined by Molinero et al. (2013) drive a profound restructuration of the plankton community modifying the phenology and the dominance of key planktonic groups including fish larvae. Consequently, the slow but deep modifications detected in the plankton community highlight a climate driven ecosystem shift in the Western English Channel.