6 resultados para Newfoundland and Labrador

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

All marine organisms are affected to some extent by the movement and thermal properties of oceanic currents. However phytoplankton, because of its small size is most directly coupled to the physical environment. The intense hydrodynamic activity observed in the Northwest Atlantic Shelves Province makes this region especially intriguing from the point of view of physical-biological interactions. In the present work, remote sensed data of Sea Surface Height (SSH) anomalies, Sea-surface chlorophyll a concentrations (SeaWiFS), and Sea Surface Temperature (SST) are used to complement the Continuous Plankton Recorder (CPR) survey that continuously sampled a route between Norfolk (Virginia, USA; 39° N, 71° W) and Argentia (Newfoundland; 47° N, 54° W) over the period 1995–1998. Over this period, we examined physical structures (i.e. SST and SSH) and climatic forcing associated with space-time phytoplankton structure. Along this route, the phytoplankton structures were mainly impacted by the changes in surface flow along the Scotian Shelf rather than significantly influenced by the mesoscale features of the Gulf Stream. These changes in water mass circulation caused a drop in temperature and salinity along the Scotian Shelf that induced changes in phytoplankton and zooplankton abundance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine environments are greatly affected by climate change, and understanding how this perturbation affects marine vertebrates is a major issue. In this context, it is essential to identify the environmental drivers of animal distribution. Here, we focused on the little auk (Alle alle), one of the world’s most numerous seabirds and a major component in Arctic food webs. Using a multidisciplinary approach, we show how little auks adopt specific migratory strategies and balance environmental constraints to optimize their energy budgets. Miniature electronic loggers indicate that after breeding, birds from East Greenland migrate .2000 km to overwinter in a restricted area off Newfoundland. Synoptic data available from the Continuous Plankton Recorder (CPR) indicate that this region harbours some of the highest densities of the copepod Calanus finmarchicus found in the North Atlantic during winter. Examination of large-scale climatic and oceanographic data suggests that little auks favour patches of high copepod abundance in areas where air temperature ranges from 0uC to 5uC. These results greatly advance our understanding of animal responses to extreme environmental constraints, and highlight that information on habitat preference is key to identifying critical areas for marine conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of Continuous Plankton Recorder sampling in the NW Atlantic between 1958 and 2006 are presented for 11 plankton taxa in eight shelf and deep ocean regions. For shelf regions, phytoplankton abundances increased in the early 1990s, mainly in winter, as the contribution of Arctic-derived freshwater to the Newfoundland (NLS) and Scotian shelves (SS) increased. Farther east, in the sub-polar gyre, phytoplankton levels increased with rising temperatures during the 1990s and 2000s. In both areas, the changes can be explained by increased stratification. The increased influx of arctic water to the NLS in the 1990s was also probably directly responsible for the increased abundances of two arctic Calanus species (C. glacialis and C. hyperboreus) and indirectly responsible for the decreased abundance of Calanus I–IV (mainly C. finmarchicus), perhaps via changes in food composition. On the SS the arctic Calanus species increased in abundance in the 2000s, likely as the result of increased transport from the Arctic via the Gulf of St Lawrence. In the deep ocean, plankton seasonal cycles changed little over the decades and increasing phytoplankton levels in the 2000s were accompanied by increases in zooplankton abundance, suggesting bottom-up control. In shelf regions, phytoplankton increases in the 1990s were in winter and Calanus I–IV appeared earlier in spring than in previous decades. Zooplankton levels generally did not change overall however, perhaps because the species examined were mainly inactive during winter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous plankton recorders (CPRs) have been used in the Northwest Atlantic for almost 50 years. While data collected by these surveys have provided valuable information on long-term variability in plankton populations, all previous analyses have been limited to only a portion of the geographic range of the available data. Here we present an analysis of the CPR data from the Mid Atlantic Bight to the Labrador Sea. Across this wide geographic range, we found many common associations among the taxa. In particular, the changes in most regions were strongly size structured, with small and medium copepods varying together and often positively related to indicators of phytoplankton abundance. The time series from nearby regions were strongly correlated; however, after 1990, the spatial pattern became more complex. During this period, several of the copepod taxa, noticeably Calanus finmarchicus and Centropages typicus, experienced a series of anomalies that appeared to propagate from northeast to southwest. Although the direction of propagation was consistent with the shelf circulation, the anomalies propagated at a rate much slower than typical current speeds. The timing of the copepod anomalies and their phase speed were similar in character to observed changes in salinity and the position of the Shelf Slope Front. The correspondence between the changes in the plankton community and changes in the physical environmental suggests that physical conditions are a strong driver of interannual variability in Northwest Atlantic Shelf ecosystems.