4 resultados para Network System

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable development depends on maintaining ecosystem services which are concentrated in coastal marine and estuarine ecosystems. Analyses of the science needed to manage human uses of ecosystem services have concentrated on terrestrial ecosystems. Our focus is on the provision of multidisciplinary data needed to inform adaptive, ecosystem-based approaches (EBAs) for maintaining coastal ecosystem services based on comparative ecosystem analyses. Key indicators of pressures on coastal ecosystems, ecosystem states and the impacts of changes in states on services are identified for monitoring and analysis at a global coastal network of sentinel sites nested in the ocean-climate observing system. Biodiversity is targeted as the “master” indicator because of its importance to a broad spectrum of services. Ultimately, successful implementation of EBAs will depend on establishing integrated, holistic approaches to ocean governance that oversee the development of integrated, operational ocean observing systems based on the data and information requirements specified by a broad spectrum of stakeholders for sustainable development. Sustained engagement of such a spectrum of stakeholders on a global scale is not feasible. The global coastal network will need to be customized locally and regionally based on priorities established by stakeholders in their respective regions. The E.U. Marine Strategy Framework Directive and the U.S. Recommendations of the Interagency Ocean Policy Task Force are important examples of emerging regional scale approaches. The effectiveness of these policies will depend on the co-evolution of ocean policy and the observing system under the auspices of integrated ocean governance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The open service network for marine environmental data (NETMAR) project uses semantic web technologies in its pilot system which aims to allow users to search, download and integrate satellite, in situ and model data from open ocean and coastal areas. The semantic web is an extension of the fundamental ideas of the World Wide Web, building a web of data through annotation of metadata and data with hyperlinked resources. Within the framework of the NETMAR project, an interconnected semantic web resource was developed to aid in data and web service discovery and to validate Open Geospatial Consortium Web Processing Service orchestration. A second semantic resource was developed to support interoperability of coastal web atlases across jurisdictional boundaries. This paper outlines the approach taken to producing the resource registry used within the NETMAR project and demonstrates the use of these semantic resources to support user interactions with systems. Such interconnected semantic resources allow the increased ability to share and disseminate data through the facilitation of interoperability between data providers. The formal representation of geospatial knowledge to advance geospatial interoperability is a growing research area. Tools and methods such as those outlined in this paper have the potential to support these efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem-based approaches (EBAs) to managing anthropogenic pressures on ecosystems, adapting to changes in ecosystem states (indicators of ecosystem health), and mitigating the impacts of state changes on ecosystem services are needed for sustainable development. EBAs are informed by integrated ecosystem assessments (IEAs) that must be compiled and updated frequently for EBAs to be effective. Frequently updated IEAs depend on the sustained provision of data and information on pressures, state changes, and impacts of state changes on services. Nowhere is this truer than in the coastal zone, where people and ecosystem services are concentrated and where anthropogenic pressures converge. This study identifies the essential indicator variables required for the sustained provision of frequently updated IEAs, and offers an approach to establishing a global network of coastal observations within the framework of the Global Ocean Observing System. The need for and challenges of capacity-building are highlighted, and examples are given of current programmes that could contribute to the implementation of a coastal ocean observing system of systems on a global scale. This illustrates the need for new approaches to ocean governance that can achieve coordinated integration of existing programmes and technologies as a first step towards this goal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. However, with the recent adoption of more explorative tools, like Bayesian networks, in predictive ecology, few assumptions can be made about the data and complex, spatially varying interactions can be recovered from collected field data. In this study, we compare Bayesian network modelling approaches accounting for latent effects to reveal species dynamics for 7 geographically and temporally varied areas within the North Sea. We also apply structure learning techniques to identify functional relationships such as prey–predator between trophic groups of species that vary across space and time. We examine if the use of a general hidden variable can reflect overall changes in the trophic dynamics of each spatial system and whether the inclusion of a specific hidden variable can model unmeasured group of species. The general hidden variable appears to capture changes in the variance of different groups of species biomass. Models that include both general and specific hidden variables resulted in identifying similarity with the underlying food web dynamics and modelling spatial unmeasured effect. We predict the biomass of the trophic groups and find that predictive accuracy varies with the models' features and across the different spatial areas thus proposing a model that allows for spatial autocorrelation and two hidden variables. Our proposed model was able to produce novel insights on this ecosystem's dynamics and ecological interactions mainly because we account for the heterogeneous nature of the driving factors within each area and their changes over time. Our findings demonstrate that accounting for additional sources of variation, by combining structure learning from data and experts' knowledge in the model architecture, has the potential for gaining deeper insights into the structure and stability of ecosystems. Finally, we were able to discover meaningful functional networks that were spatially and temporally differentiated with the particular mechanisms varying from trophic associations through interactions with climate and commercial fisheries.