5 resultados para Nature study
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
During the 1970’s and 1980’s, the late Dr Norman Holme undertook extensive towed sledge surveys in the English Channel and some in the Irish Sea. Only a minority of the resulting images were analysed and reported before his death in 1989 but logbooks, video and film material has been archived in the National Marine Biological Library (NMBL) in Plymouth. A scoping study was therefore commissioned by the Joint Nature Conservation Committee and as a part of the Mapping European Seabed Habitats (MESH) project to identify the value of the material archived and the procedure and cost to undertake further work. The results of the scoping study are: 1. NMBL archives hold 106 videotapes (reel-to-reel Sony HD format) and 59 video cassettes (including 15 from the Irish Sea) in VHS format together with 90 rolls of 35 mm colour transparency film (various lengths up to about 240 frames per film). These are stored in the Archive Room, either in a storage cabinet or in original film canisters. 2. Reel-to-reel material is extensive and had already been selectively copied to VHS cassettes. The cost of transferring it to an accepted ‘long-life’ medium (Betamax) would be approximately £15,000. It was not possible to view the tapes as a suitable machine was not located. The value of the tapes is uncertain but they are likely to become beyond salvation within one to two years. 3. Video cassette material is in good condition and is expected to remain so for several more years at least. Images viewed were generally of poor quality and the speed of tow often makes pictures blurred. No immediate action is required. 4. Colour transparency films are in good condition and the images are very clear. They provide the best source of information for mapping seabed biotopes. They should be scanned to digital format but inexpensive fast copying is problematic as there are no between-frame breaks between images and machines need to centre the image based on between-frame breaks. The minimum cost to scan all of the images commercially is approximately £6,000 and could be as much as £40,000 on some quotations. There is a further cost in coding and databasing each image and, all-in-all it would seem most economic to purchase a ‘continuous film’ scanner and undertake the work in-house. 5. Positional information in ships logs has been matched to films and to video tapes. Decca Chain co-ordinates recorded in the logbooks have been converted to latitude and longitude (degrees, minutes and seconds) and a further routine developed to convert to degrees and decimal degrees required for GIS mapping. However, it is unclear whether corrections to Decca positions were applied at the time the position was noted. Tow tracks have been mapped onto an electronic copy of a Hydrographic Office chart. 6. The positions of start and end of each tow were entered to a spread sheet so that they can be displayed on GIS or on a Hydrographic Office Chart backdrop. The cost of the Hydrographic Office chart backdrop at a scale of 1:75,000 for the whole area was £458 incl. VAT. 7. Viewing all of the video cassettes to note habitats and biological communities, even by an experienced marine biologist, would take at least in the order of 200 hours and is not recommended. English Channel towed sledge seabed images. Phase 1: scoping study and example analysis. 6 8. Once colour transparencies are scanned and indexed, viewing to identify seabed habitats and biological communities would probably take about 100 hours for an experienced marine biologist and is recommended. 9. It is expected that identifying biotopes along approximately 1 km lengths of each tow would be feasible although uncertainties about Decca co-ordinate corrections and exact positions of images most likely gives a ±250 m position error. More work to locate each image accurately and solve the Decca correction question would improve accuracy of image location. 10. Using codings (produced by Holme to identify different seabed types), and some viewing of video and transparency material, 10 biotopes have been identified, although more would be added as a result of full analysis. 11. Using the data available from the Holme archive, it is possible to populate various fields within the Marine Recorder database. The overall ‘survey’ will be ‘English Channel towed video sled survey’. The ‘events’ become the 104 tows. Each tow could be described as four samples, i.e. the start and end of the tow and two areas in the middle to give examples along the length of the tow. These samples would have their own latitude/longitude co-ordinates. The four samples would link to a GIS map. 12. Stills and video clips together with text information could be incorporated into a multimedia presentation, to demonstrate the range of level seabed types found along a part of the northern English Channel. More recent images taken during SCUBA diving of reef habitats in the same area as the towed sledge surveys could be added to the Holme images.
Resumo:
This research is concerned with the following environmental research questions: socio-ecological system complexity, especially when valuing ecosystem services; ecosystems stock and services flow sustainability and valuation; the incorporation of scale issues when valuing ecosystem services; and the integration of knowledge from diverse disciplines for governance and decision making. In this case study, we focused on ecosystem services that can be jointly supplied but independently valued in economic terms: healthy climate (via carbon sequestration and storage), food (via fisheries production in nursery grounds), and nature recreation (nature watching and enjoyment). We also explored the issue of ecosystem stock and services flow, and we provide recommendations on how to value stock and flows of ecosystem services via accounting and economic values respectively. We considered broadly comparable estuarine systems located on the English North Sea coast: the Blackwater estuary and the Humber estuary. In the past, these two estuaries have undergone major land-claim. Managed realignment is a policy through which previously claimed intertidal habitats are recreated allowing the enhancement of the ecosystem services provided by saltmarshes. In this context, we investigated ecosystem service values, through biophysical estimates and welfare value estimates. Using an optimistic (extended conservation of coastal ecosystems) and a pessimistic (loss of coastal ecosystems because of, for example, European policy reversal) scenario, we find that context dependency, and hence value transfer possibilities, vary among ecosystem services and benefits. As a result, careful consideration in the use and application of value transfer, both in biophysical estimates and welfare value estimates, is advocated to supply reliable information for policy making.
Resumo:
Ecosystem models are often assessed using quantitative metrics of absolute ecosystem state, but these model-data comparisons are disproportionately vulnerable to discrepancies in the location of important circulation features. An alternative method is to demonstrate the models capacity to represent ecosystem function; the emergence of a coherent natural relationship in a simulation indicates that the model may have an appropriate representation of the ecosystem functions that lead to the emergent relationship. Furthermore, as emergent properties are large-scale properties of the system, model validation with emergent properties is possible even when there is very little or no appropriate data for the region under study, or when the hydrodynamic component of the model differs significantly from that observed in nature at the same location and time. A selection of published meta-analyses are used to establish the validity of a complex marine ecosystem model and to demonstrate the power of validation with emergent properties. These relationships include the phytoplankton community structure, the ratio of carbon to chlorophyll in phytoplankton and particulate organic matter, the ratio of particulate organic carbon to particulate organic nitrogen and the stoichiometric balance of the ecosystem. These metrics can also inform aspects of the marine ecosystem model not available from traditional quantitative and qualitative methods. For instance, these emergent properties can be used to validate the design decisions of the model, such as the range of phytoplankton functional types and their behaviour, the stoichiometric flexibility with regards to each nutrient, and the choice of fixed or variable carbon to nitrogen ratios.
Resumo:
High level environmental screening study for offshore wind farm developments – marine habitats and species This report provides an awareness of the environmental issues related to marine habitats and species for developers and regulators of offshore wind farms. The information is also relevant to other offshore renewable energy developments. The marine habitats and species considered are those associated with the seabed, seabirds, and sea mammals. The report concludes that the following key ecological issues should be considered in the environmental assessment of offshore wind farms developments: • likely changes in benthic communities within the affected area and resultant indirect impacts on fish, populations and their predators such as seabirds and sea mammals; • potential changes to the hydrography and wave climate over a wide area, and potential changes to coastal processes and the ecology of the region; • likely effects on spawning or nursery areas of commercially important fish and shellfish species; • likely effects on mating and social behaviour in sea mammals, including migration routes; • likely effects on feeding water birds, seal pupping sites and damage of sensitive or important intertidal sites where cables come onshore; • potential displacement of fish, seabird and sea mammals from preferred habitats; • potential effects on species and habitats of marine natural heritage importance; • potential cumulative effects on seabirds, due to displacement of flight paths, and any mortality from bird strike, especially in sensitive rare or scarce species; • possible effects of electromagnetic fields on feeding behaviour and migration, especially in sharks and rays, and • potential marine conservation and biodiversity benefits of offshore wind farm developments as artificial reefs and 'no-take' zones. The report provides an especially detailed assessment of likely sensitivity of seabed species and habitats in the proposed development areas. Although sensitive to some of the factors created by wind farm developments, they mainly have a high recovery potential. The way in which survey data can be linked to Marine Life Information Network (MarLIN) sensitivity assessments to produce maps of sensitivity to factors is demonstrated. Assessing change to marine habitats and species as a result of wind farm developments has to take account of the natural variability of marine habitats, which might be high especially in shallow sediment biotopes. There are several reasons for such changes but physical disturbance of habitats and short-term climatic variability are likely to be especially important. Wind farm structures themselves will attract marine species including those that are attached to the towers and scour protection, fish that associate with offshore structures, and sea birds (especially sea duck) that may find food and shelter there. Nature conservation designations especially relevant to areas where wind farm might be developed are described and the larger areas are mapped. There are few designated sites that extend offshore to where wind farms are likely to be developed. However, cable routes and landfalls may especially impinge on designated sites. The criteria that have been developed to assess the likely marine natural heritage importance of a location or of the habitats and species that occur there can be applied to survey information to assess whether or not there is anything of particular marine natural heritage importance in a development area. A decision tree is presented that can be used to apply ‘duty of care’ principles to any proposed development. The potential ‘gains’ for the local environment are explored. Wind farms will enhance the biodiversity of areas, could act as refugia for fish, and could be developed in a way that encourages enhancement of fish stocks including shellfish.