99 resultados para NORTHWEST ATLANTIC

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Situated in an oceanographic transition zone, the Gulf of Maine/Western Scotian Shelf (GOM/WSS) region of the Northwest Atlantic is especially susceptible to changes in the climate system. Recent studies have shown that a coupled slope water system (CSWS) operates in the Northwest Atlantic and responds in a similar manner to climatic forcing over a broad range of time scales. These studies further suggest that it may be possible to associate different modes of the CSWS with the different phases of the North Atlantic Oscillation (NAO). Results from recent GLOBEC field studies in the Northwest Atlantic provide strong evidence linking physical responses of the CSWS to basin-scale forcing associated with the NAO. By placing these results in the context of time-series data collected from the GOM/WSS over the past half century, we show that we show that: (i) the region’s shelf ecosystems respond both physically and biologically to modal shifts in the CSWS; (ii) the CSWS mediates the effects on these ecosystems of basin-scale climatic forcing associated with the NAO and (iii) certain planktonic species can be good indicators of the CSWS’s modal state on inter-annual to interdecadal time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Continuous Plankton Recorder (CPR) survey has sampled regularly in the Northwest Atlantic since the early 1960s. Over the last decade there has been a dramatic increase in the abundance of a number of arctic boreal plankton species, notably Calanus hyperboreus (Kroyer), Calanus glacialis (Jaschnov), and Ceratium arcticum, and a southerly shift of the copepod C. hyperboreus in the CPR survey. In 1998, C. hyperboreus was recorded at its farthest position south in the survey, 39 degrees N, off the Georges Bank shelf edge. Other studies have reported similar parallel biological responses on three trophic levels. During the late 1990s, production of Labrador Sea Water (LSW) has been at a high, a direct response to the phase of the North Atlantic Oscillation (NAO). The increase in abundance of these species, up to four standard deviations from the long-term mean, is linked to variability in the hydrography of the area and the driving climatic processes of the North Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All marine organisms are affected to some extent by the movement and thermal properties of oceanic currents. However phytoplankton, because of its small size is most directly coupled to the physical environment. The intense hydrodynamic activity observed in the Northwest Atlantic Shelves Province makes this region especially intriguing from the point of view of physical-biological interactions. In the present work, remote sensed data of Sea Surface Height (SSH) anomalies, Sea-surface chlorophyll a concentrations (SeaWiFS), and Sea Surface Temperature (SST) are used to complement the Continuous Plankton Recorder (CPR) survey that continuously sampled a route between Norfolk (Virginia, USA; 39° N, 71° W) and Argentia (Newfoundland; 47° N, 54° W) over the period 1995–1998. Over this period, we examined physical structures (i.e. SST and SSH) and climatic forcing associated with space-time phytoplankton structure. Along this route, the phytoplankton structures were mainly impacted by the changes in surface flow along the Scotian Shelf rather than significantly influenced by the mesoscale features of the Gulf Stream. These changes in water mass circulation caused a drop in temperature and salinity along the Scotian Shelf that induced changes in phytoplankton and zooplankton abundance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent decades, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. Additionally, shifts in the Arctic's atmospheric pressure field have altered surface winds, ocean circulation, and freshwater storage in the Beaufort Gyre. These processes have resulted in variable patterns of freshwater export from the Arctic Ocean, including the emergence of great salinity anomalies propagating throughout the North Atlantic. Here, we link these variable patterns of freshwater export from the Arctic Ocean to the regime shifts observed in Northwest Atlantic shelf ecosystems. Specifically, we hypothesize that the corresponding salinity anomalies, both negative and positive, alter the timing and extent of water-column stratification, thereby impacting the production and seasonal cycles of phytoplankton, zooplankton, and higher-trophic-level consumers. Should this hypothesis hold up to critical evaluation, it has the potential to fundamentally alter our current understanding of the processes forcing the dynamics of Northwest Atlantic shelf ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoplankton abundance in the NW Atlantic was measured by continuous plankton recorder (CPR) sampling along tracks between Iceland and the western Scotian Shelf from 1998 to 2006, when sea-surface chlorophyll (SSChl) measurements were also being made by ocean colour satellite imagery using the SeaWiFS sensor. Seasonal and inter-annual changes in phytoplankton abundance were examined using data collected by both techniques, averaged over each of four shelf regions and four deep ocean regions. CPR sampling had gaps (missing months) in all regions and in the four deep ocean regions satellite observations were too sparse between November and February to be of use. Average seasonal cycles of SSChl were similar to those of total diatom abundance in seven regions, to those of the phytoplankton colour index in six regions, but were not similar to those of total dinoflagellate abundance anywhere. Large inter-annual changes in spring bloom dynamics were captured by both samplers in shelf regions. Changes in annual (or 8 months) averages of SSChl did not generally follow those of the CPR indices within regions and multi-year averages of SSChl, and the three CPR indices were generally higher in shelf than in deep ocean regions. Remote sensing and CPR sampling provide complementary ways of monitoring phytoplankton in the ocean: the former has superior temporal and spatial coverage and temporal resolution, and the latter provides better taxonomic information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of Continuous Plankton Recorder sampling in the NW Atlantic between 1958 and 2006 are presented for 11 plankton taxa in eight shelf and deep ocean regions. For shelf regions, phytoplankton abundances increased in the early 1990s, mainly in winter, as the contribution of Arctic-derived freshwater to the Newfoundland (NLS) and Scotian shelves (SS) increased. Farther east, in the sub-polar gyre, phytoplankton levels increased with rising temperatures during the 1990s and 2000s. In both areas, the changes can be explained by increased stratification. The increased influx of arctic water to the NLS in the 1990s was also probably directly responsible for the increased abundances of two arctic Calanus species (C. glacialis and C. hyperboreus) and indirectly responsible for the decreased abundance of Calanus I–IV (mainly C. finmarchicus), perhaps via changes in food composition. On the SS the arctic Calanus species increased in abundance in the 2000s, likely as the result of increased transport from the Arctic via the Gulf of St Lawrence. In the deep ocean, plankton seasonal cycles changed little over the decades and increasing phytoplankton levels in the 2000s were accompanied by increases in zooplankton abundance, suggesting bottom-up control. In shelf regions, phytoplankton increases in the 1990s were in winter and Calanus I–IV appeared earlier in spring than in previous decades. Zooplankton levels generally did not change overall however, perhaps because the species examined were mainly inactive during winter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous plankton recorders (CPRs) have been used in the Northwest Atlantic for almost 50 years. While data collected by these surveys have provided valuable information on long-term variability in plankton populations, all previous analyses have been limited to only a portion of the geographic range of the available data. Here we present an analysis of the CPR data from the Mid Atlantic Bight to the Labrador Sea. Across this wide geographic range, we found many common associations among the taxa. In particular, the changes in most regions were strongly size structured, with small and medium copepods varying together and often positively related to indicators of phytoplankton abundance. The time series from nearby regions were strongly correlated; however, after 1990, the spatial pattern became more complex. During this period, several of the copepod taxa, noticeably Calanus finmarchicus and Centropages typicus, experienced a series of anomalies that appeared to propagate from northeast to southwest. Although the direction of propagation was consistent with the shelf circulation, the anomalies propagated at a rate much slower than typical current speeds. The timing of the copepod anomalies and their phase speed were similar in character to observed changes in salinity and the position of the Shelf Slope Front. The correspondence between the changes in the plankton community and changes in the physical environmental suggests that physical conditions are a strong driver of interannual variability in Northwest Atlantic Shelf ecosystems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Continuous Plankton Recorder survey has monitored plankton in the Northwest Atlantic at monthly intervals since 1962, with an interegnum between 1978 and 1990. In May 1999, large numbers of the Pacific diatom Neodenticula seminae were found in Continuous Plankton Recorder (CPR) samples in the Labrador Sea as the first record in the North Atlantic for more than 800 000 years. The event coincided with modifications in Arctic hydrography and circulation, increased flows of Pacific water into the Northwest Atlantic and in the previous year the exceptional occurrence of extensive ice-free water to the North of Canada. These observations indicate that N. seminae was carried in a pulse of Pacific water in 1998/early 1999 via the Canadian Arctic Archipelago and/or Fram Strait. The species occurred previously in the North Atlantic during the Pleistocene from similar to 1.2 to similar to 0.8 Ma as recorded in deep sea sediment cores. The reappearance of N. seminae in the North Atlantic is an indicator of the scale and speed of changes that are taking place in the Arctic and North Atlantic oceans as a consequence of regional climate warming. Because of the unusual nature of the event it appears that a threshold has been passed, marking a change in the circulation between the North Pacific and North Atlantic Oceans via the Arctic. Trans-Arctic migrations from the Pacific into the Atlantic are likely to occur increasingly over the next 100 years as Arctic ice continues to melt affecting Atlantic biodiversity and the biological pump with consequent feedbacks to the carbon cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zooplankton are indicators of the response of marine ecosystems to environmental variability. The relationships between zooplankton communities on the Scotian Shelf and hydrographic and geographic regions of the Scotian Shelf in the 1990s and 2000s were described using complementary data sets, each resolving different space and time scales. The Atlantic Zone Monitoring Program (AZMP) sampled Scotian Shelf zooplankton from the whole water column twice per year at stations along three cross-shelf transects and semi-monthly at a fixed station on the inshore central shelf, while Continuous Plankton Recorder (CPR) samples were collected from near-surface waters approximately monthly on an along-shelf transect. Variability patterns were compared among these three data sets to identify robust spatial and interannual trends. Stations were clustered based on taxonomic composition, and spatial clusters were compared to hydrographic boundaries and bathymetry to determine whether temporal changes in community composition were driven by changes in water mass distributions on the shelf. This project identifies zooplankton community and abundance shifts that may affect fish recruitment in the northwest Atlantic and contributes to development of ecosystem-based fisheries management on the Scotian Shelf.