6 resultados para NEXT-GENERATION SEQUENCING
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Abstract Molecular probe-based methods (Fluorescent in-situ hybridisation or FISH, Next Generation Sequencing or NGS) have proved successful in improving both the efficiency and accuracy of the identification of microorganisms, especially those that lack distinct morphological features, such as picoplankton. However, FISH methods have the major drawback that they can only identify one or just a few species at a time because of the reduced number of available fluorochromes that can be added to the probe. Although the length of sequence that can be obtained is continually improving, NGS still requires a great deal of handling time, its analysis time is still months and with a PCR step it will always be sensitive to natural enzyme inhibitors. With the use of DNA microarrays, it is possible to identify large numbers of taxa on a single-glass slide, the so-called phylochip, which can be semi-quantitative. This review details the major steps in probe design, design and production of a phylochip and validation of the array. Finally, major microarray studies in the phytoplankton community are reviewed to demonstrate the scope of the method.
Resumo:
Abstract Molecular probe-based methods (Fluorescent in-situ hybridisation or FISH, Next Generation Sequencing or NGS) have proved successful in improving both the efficiency and accuracy of the identification of microorganisms, especially those that lack distinct morphological features, such as picoplankton. However, FISH methods have the major drawback that they can only identify one or just a few species at a time because of the reduced number of available fluorochromes that can be added to the probe. Although the length of sequence that can be obtained is continually improving, NGS still requires a great deal of handling time, its analysis time is still months and with a PCR step it will always be sensitive to natural enzyme inhibitors. With the use of DNA microarrays, it is possible to identify large numbers of taxa on a single-glass slide, the so-called phylochip, which can be semi-quantitative. This review details the major steps in probe design, design and production of a phylochip and validation of the array. Finally, major microarray studies in the phytoplankton community are reviewed to demonstrate the scope of the method.
Resumo:
Over the past 50 years, many millions of European honey bee (Apis mellifera) colonies have died as the ectoparasitic mite, Varroa destructor, has spread around the world. Subsequent studies have indicated that the mite’s association with a group of RNA viral pathogens (Deformed Wing Virus, DWV) correlates with colony death. Here, we propose a phenomenon known as superinfection exclusion that provides an explanation of how certain A. mellifera populations have survived, despite Varroa infestation and high DWV loads. Next-generation sequencing has shown that a non-lethal DWV variant ‘type B’ has become established in these colonies and that the lethal ‘type A’ DWV variant fails to persist in the bee population. We propose that this novel stable host-pathogen relationship prevents the accumulation of lethal variants, suggesting that this interaction could be exploited for the development of an effective treatment that minimises colony losses in the future.
Resumo:
Over the past 50 years, many millions of European honey bee (Apis mellifera) colonies have died as the ectoparasitic mite, Varroa destructor, has spread around the world. Subsequent studies have indicated that the mite’s association with a group of RNA viral pathogens (Deformed Wing Virus, DWV) correlates with colony death. Here, we propose a phenomenon known as superinfection exclusion that provides an explanation of how certain A. mellifera populations have survived, despite Varroa infestation and high DWV loads. Next-generation sequencing has shown that a non-lethal DWV variant ‘type B’ has become established in these colonies and that the lethal ‘type A’ DWV variant fails to persist in the bee population. We propose that this novel stable host-pathogen relationship prevents the accumulation of lethal variants, suggesting that this interaction could be exploited for the development of an effective treatment that minimises colony losses in the future.
Resumo:
Treatment of emerging RNA viruses is hampered by the high mutation and replication rates that enable these viruses to operate as a quasispecies. Declining honey bee populations have been attributed to the ectoparasitic mite Varroa destructor and its affiliation with Deformed Wing Virus (DWV). In the current study we use next-generation sequencing to investigate the DWV quasispecies in an apiary known to suffer from overwintering colony losses. We show that the DWV species complex is made up of three master variants. Our results indicate that a new DWV Type C variant is distinct from the previously described types A and B, but together they form a distinct clade compared with other members of the Iflaviridae. The molecular clock estimation predicts that Type C diverged from the other variants ~319 years ago. The discovery of a new master variant of DWV has important implications for the positive identification of the true pathogen within global honey bee populations.
Resumo:
Treatment of emerging RNA viruses is hampered by the high mutation and replication rates that enable these viruses to operate as a quasispecies. Declining honey bee populations have been attributed to the ectoparasitic mite Varroa destructor and its affiliation with Deformed Wing Virus (DWV). In the current study we use next-generation sequencing to investigate the DWV quasispecies in an apiary known to suffer from overwintering colony losses. We show that the DWV species complex is made up of three master variants. Our results indicate that a new DWV Type C variant is distinct from the previously described types A and B, but together they form a distinct clade compared with other members of the Iflaviridae. The molecular clock estimation predicts that Type C diverged from the other variants ~319 years ago. The discovery of a new master variant of DWV has important implications for the positive identification of the true pathogen within global honey bee populations.