2 resultados para Myrmecophaga tridactyla
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Spatiotemporal variation in seabird demographic parameters is often pronounced and may be an important source of information on the state of marine ecosystems. Black-legged kittiwakes Rissa tridactyla in Britain and Ireland show strong regional structure in breeding productivity, and both temporal and spatial variation are probably related to abundance of the principal prey of breeding kittiwakes, the lesser sandeel Ammodytes marinus. Annual regional estimates of sandeel abundance do not exist, prohibiting direct tests of this hypothesis. We examined relationships between kittiwake breeding productivity and 2 potential proxies of sandeel abundance, winter sea surface temperature (SST) and abundance of Calanus copepods, within and among 6 regions in Britain and Ireland from 1986 to 2004. Means and trends in winter SST differed among regions, with higher means and less pronounced increasing trends in western (Atlantic) regions than in eastern (North Sea) regions. A negative relationship between breeding productivity and winter SST in the previous year was found within 2 regions (East Scotland and Orkney), as well as in a cross-regional analysis. Results were inconclusive for Calanus abundance, with a positive relationship in East Scotland and negative in Orkney. These results demonstrate that although a single environmental driver (SST) is related to both within- and between-region variation in a key demographic parameter, regional heterogeneity in SST trends as well as the importance of other factors may lead to highly variable responses. Understanding this heterogeneity is critical for predicting long-term effects of climate change or other anthropogenic drivers on marine ecosystems.
Resumo:
Top predators, particularly seabirds, have repeatedly been suggested as indicators of marine ecosystem status. One region currently under pressure from human fisheries and climate change is the North Sea. Standardized seabird monitoring data have been collected on the Isle of May, an important seabird colony in the northwestern North Sea, over the last 10–20 years. Over this period oceanographic conditions have varied markedly, and between 1990 and 1999 a major industrial fishery for sandlance (Ammodytes marinus), the main prey of most seabird species, was prosecuted nearby. Sandlance fishing grounds close to seabird colonies down the east coast of the UK were closed in 2000 in an attempt to improve foraging opportunities for breeding seabirds, particularly black-legged kittiwakes (Rissa tridactyla). Initially this closure seemed to be beneficial for kittiwakes with breeding success recovering to pre-fishery levels. However, despite the ban continuing, kittiwakes and many other seabird species in the North Sea suffered severe breeding failures in 2004. In this paper, we test the predictive power of four previously established correlations between kittiwake breeding success and climatic/trophic variables to explain the observed breeding success at the Isle of May in 2004. During the breeding season, kittiwakes at this colony switch from feeding on 1+ group to 0 group sandlance, and results up until 2003 indicated that availability of both age classes had a positive effect on kittiwake breeding success. The low breeding success of kittiwakes in 2004 was consistent with the late appearance and small body size of 0 group sandlance, but at odds with the two variables likely to operate via 1 group availability (lagged winter sea surface temperature and larval sandlance cohort strength in 2003). The reason for the discrepancy is currently unknown, but analysis of 1 group sandlance body composition indicated that lipid content in 2004 was extremely low, and thus fish eaten by kittiwakes during pre-breeding and early incubation were likely to be of poor quality. Monitoring of reproductive success of kittiwakes, although useful, was clearly not sufficient to tease apart the complex causation underlying the 2004 event. Monitoring programs such as this, therefore, need to be complemented by detailed research to identify the mechanisms involved, and to attribute and predict the effects of natural and human-induced environmental change.