2 resultados para Multiple-effect

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential phenological responses to climate among species are predicted to disrupt trophic interactions, but datasets to evaluate this are scarce. We compared phenological trends for species from 4 levels of a North Sea food web over 24 yr when sea surface temperature (SST) increased significantly. We found little consistency in phenological trends between adjacent trophic levels, no significant relationships with SST, and no significant pairwise correlations between predator and prey phenologies, suggesting that trophic mismatching is occurring. Finer resolution data on timing of peak energy demand (mid-chick-rearing) for 5 seabird species at a major North Sea colony were compared to modelled daily changes in length of 0-group (young of the year) lesser sandeels Ammodytes marinus. The date at which sandeels reached a given threshold length became significantly later during the study. Although the phenology of all the species except shags also became later, these changes were insufficient to keep pace with sandeel length, and thus mean length (and energy value) of 0-group sandeels at mid-chick-rearing showed net declines. The magnitude of declines in energy value varied among the seabirds, being more marked in species showing no phenological response (shag, 4.80 kJ) and in later breeding species feeding on larger sandeels (kittiwake, 2.46 kJ) where, due to the relationship between sandeel length and energy value being non-linear, small reductions in length result in relatively large reductions in energy. However, despite the decline in energy value of 0-group sandeels during chick-rearing, there was no evidence of any adverse effect on breeding success for any of the seabird species. Trophic mismatch appears to be prevalent within the North Sea pelagic food web, suggesting that ecosystem functioning may be disrupted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highlights •We exposed meiofauna to 7 different large macrofauna species at high and low densities. •Macrofauna presence altered nematode community structure and reduced their abundance. •Macrofauna species had similar effects by reducing the few dominant nematode species. •Meio–macrofauna resource competition and spatial segregation are the main drivers. •Trawling effects on macrofauna affect nematode communities indirectly. Diverse assemblages of infauna in sediments provide important physical and biogeochemical services, but are under increasing pressure by anthropogenic activities, such as benthic trawling. It is known that trawling disturbance has a substantial effect on the larger benthic fauna, with reductions in density and diversity, and changes in community structure, benthic biomass, production, and bioturbation and biogeochemical processes. Largely unknown, however, are the mechanisms by which the trawling impacts on the large benthic macro- and megafauna may influence the smaller meiofauna. To investigate this, a mesocosm experiment was conducted whereby benthic nematode communities from a non-trawled area were exposed to three different densities (absent, low, normal) of 7 large (> 10 mm) naturally co-occurring, bioturbating species which are potentially vulnerable to trawling disturbance. The results showed that total abundances of nematodes were lower if these large macrofauna species were present, but no clear nematode abundance effects could be assigned to the macrofauna density differences. Nematode community structure changed in response to macrofauna presence and density, mainly as a result of the reduced abundance of a few dominant nematode species. Any detectable effects seemed similar for nearly all macrofauna species treatments, supporting the idea that there may be a general indirect, macrofauna-mediated trawling impact on nematode communities. Explanations for these results may be, firstly, competition for food resources, resulting in spatial segregation of the meio- and macrobenthic components. Secondly, different densities of large macrofauna organisms may affect the nematode community structure through different intensities of bioturbatory disturbance or resource competition. These results suggest that removal or reduced densities of larger macrofauna species as a result of trawling disturbance may lead to increased nematode abundance and hints at the validity of interference competition between large macrofauna organisms and the smaller meiofauna, and the energy equivalence hypothesis, where a trade-off is observed between groups of organisms that are dependent on a common source of energy.