7 resultados para Mortality and race

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this paper is to provide the core description of the modelling exercise within the Shelf Edge Advection Mortality And Recruitment (SEAMAR) programme. An individual-based model (IBM) was developed for the prediction of year-to-year survival of the early life-history stages of mackerel (Scomber scombrus) in the eastern North Atlantic. The IBM is one of two components of the model system. The first component is a circulation model to provide physical input data for the IBM. The circulation model is a geographical variant of the HAMburg Shelf Ocean Model (HAMSOM). The second component is the IBM, which is an i-space configuration model in which large numbers of individuals are followed as discrete entities to simulate the transport, growth and mortality of mackerel eggs, larvae and post-larvae. Larval and post-larval growth is modelled as a function of length, temperature and food distribution; mortality is modelled as a function of length and absolute growth rate. Each particle is considered as a super-individual representing 10 super(6) eggs at the outset of the simulation, and then declining according to the mortality function. Simulations were carried out for the years 1998-2000. Results showed concentrations of particles at Porcupine Bank and the adjacent Irish shelf, along the Celtic Sea shelf-edge, and in the southern Bay of Biscay. High survival was observed only at Porcupine and the adjacent shelf areas, and, more patchily, around the coastal margin of Biscay. The low survival along the shelf-edge of the Celtic Sea was due to the consistently low estimates of food availability in that area.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An individual-based model (IBM) for the simulation of year-to-year survival during the early life-history stages of the north-east Atlantic stock of mackerel (Scomber scombrus) was developed within the EU funded Shelf-Edge Advection, Mortality and Recruitment (SEAMAR) programme. The IBM included transport, growth and survival and was used to track the passive movement of mackerel eggs, larvae and post-larvae and determine their distribution and abundance after approximately 2 months of drift. One of the main outputs from the IBM, namely distributions and numbers of surviving post-larvae, are compared with field data as recruit (age-0/age-1 juveniles) distribution and abundance for the years 1998, 1999 and 2000. The juvenile distributions show more inter-annual and spatial variability than the modelled distributions of survivors; this may be due to the restriction of using the same initial egg distribution for all 3 yr of simulation. The IBM simulations indicate two main recruitment areas for the north-east Atlantic stock of mackerel, these being Porcupine Bank and the south-eastern Bay of Biscay. These areas correspond to areas of high juvenile catches, although the juveniles generally have a more widespread distribution than the model simulations. The best agreement between modelled data and field data for distribution (juveniles and model survivors) is for the year 1998. The juvenile catches in different representative nursery areas are totalled to give a field abundance index (FAI). This index is compared with a model survivor index (MSI) which is calculated from the total of survivors for the whole spawning season. The MSI compares favourably with the FAI for 1998 and 1999 but not for 2000; in this year, juvenile catches dropped sharply compared with the previous years but there was no equivalent drop in modelled survivors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We measured membrane permeability, hydrolytic enzyme, and caspase-like activities using fluorescent cell stains to document changes caused by nutrient exhaustion in the coccolithophore Emiliania huxleyi and the diatom Thalassiosira pseudonana, during batch-culture nutrient limitation. We related these changes to cell death, pigment alteration, and concentrations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) to assess the transformation of these compounds as cell physiological condition changes. E. huxleyi persisted for 1 month in stationary phase; in contrast, T. pseudonana cells rapidly declined within 10 d of nutrient depletion. T. pseudonana progressively lost membrane integrity and the ability to metabolize 5-chloromethylfluorescein diacetate (CMFDA; hydrolytic activity), whereas E. huxleyi developed two distinct CMFDA populations and retained membrane integrity (SYTOX Green). Caspase-like activity appeared higher in E. huxleyi than in T. pseudonana during the post-growth phase, despite a lack of apparent mortality and cell lysis. Photosynthetic pigment degradation and transformation occurred in both species after growth; chlorophyll a (Chl a) degradation was characterized by an increase in the ratio of methoxy Chl a : Chl a in T. pseudonana but not in E. huxleyi, and the increase in this ratio preceded loss of membrane integrity. Total DMSP declined in T. pseudonana during cell death and DMS increased. In contrast, and in the absence of cell death, total DMSP and DMS increased in E. huxleyi. Our data show a novel chlorophyll alteration product associated with T. pseudonana death, suggesting a promising approach to discriminate nonviable cells in nature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Nassau grouper, Epinephelus striatus (Bloch, 1792), is an endangered species that has been historically overexploited in numerous fisheries throughout its range in the Caribbean and tropical West Atlantic. Data relating fishery exploitation levels to stock abundance of the species are deficient, and protective regulations for the Nassau grouper are yet to be implemented in the Turks and Caicos Islands (TCI). The goal of this study was to conduct a stock assessment and evaluate the exploitation status of the Nassau grouper in the TCI. Materials and methods. Calibrated length cohort analysis was applied to published fisheries data on Nassau grouper landings in the TCI. The total lengths of Nassau groupers among the catches of spearfishers, lobster trappers, and deep sea fishers on the island of South Caicos during 2006 and 2008 were used with estimates of growth, natural mortality, and total annual landings to derive exploitation benchmarks. Results. The TCI stock experienced low to moderate fishing mortality (0.28, 0.18) and exploitation rates (0.49, 0.38) during the period of the study (2006, 2008). However, 21.2%-64.4% of all landings were reproductively immature. Spearfishing appeared to contribute most to fishing mortality relative to the use of lobster traps or hydraulic reels along bank drop-offs. Conclusion. In comparison with available fisheries data for the wider Caribbean, the results reveal the TCI as one of the remaining sites, in addition to the Bahamas, with a substantial Nassau grouper stock. In light of increasing development and tourism in the TCI, continued monitoring is essential to maintain sustainable harvesting practices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.