16 resultados para Morphological
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
Resumo:
This study describes phenotypic and genotypic variations in the planktonic copepod, Centropages typicus (Copepoda: Calanoida) that indicate differentiation between geographical samples. We found consistent differences in the morphology of the chela of the sexually modified fifth pereiopod (P5) of male C. typicus between samples from the Mediterranean, western North Atlantic and eastern North Atlantic. A 560 base pairs (bp) region of the C. typicus mitochondrial cytochrome c oxidase subunit I (COI) and a 462 bp fragment of the nuclear rDNA internal transcribed spacer (ITS) tandem array were analysed to determine whether these morphological variations reflect population genetic differentiation. Mitochondrial haplotype diversity was found to be high with 100 unique COI haplotypes among 116 individuals. Analysis of mtCOI variation suggested differentiation between the Mediterranean and Atlantic populations but no separation was detected within the Atlantic. Intragenomic variation in the ITS array suggested genetic differentiation between samples from the western North Atlantic and those from the eastern North Atlantic and Mediterranean. Breeding experiments would be required to elucidate the extent of genetic isolation between C. typicus from the different population centres.
Resumo:
The taxonomic assignment of Prorocentrum species is based on morphological characteristics; however, morphological variability has been found for several taxa isolated from different geographical regions. In this study, we evaluated species boundaries of Prorocentrum hoffmannianum and Prorocentrum belizeanum based on morphological and molecular data. A detailed morphological analysis was done, concentrating on the periflagellar architecture. Molecular analyses were performed on partial Small Sub-Unit (SSU) rDNA, partial Large Sub-Unit (LSU) rDNA, complete Internal Transcribed Spacer Regions (ITS1-5.8S-ITS2), and partial cytochrome b (cob) sequences. We concatenated the SSU-ITS-LSU fragments and constructed a phylogenetic tree using Bayesian Inference (BI) and maximum likelihood (ML) methods. Morphological analyses indicated that the main characters, such as cell size and number of depressions per valve, normally used to distinguish P. hoffmannianum from P. belizeanum, overlapped. No clear differences were found in the periflagellar area architecture. Prorocentrum hoffmannianum and P. belizeanum were a highly supported monophyletic clade separated into three subclades, which broadly corresponded to the sample collection regions. Subtle morphological overlaps found in cell shape, size, and ornamentation lead us to conclude that P. hoffmanianum and P. belizeanum might be considered conspecific. The molecular data analyses did not separate P. hoffmannianum and P. belizeanum into two morphospecies, and thus, we considered them to be the P. hoffmannianum species complex because their clades are separated by their geographic origin. These geographic and genetically distinct clades could be referred to as ribotypes: (A) Belize, (B) Florida-Cuba, (C1) India, and (C2) Australia.
Resumo:
Plagiogrammaceae, a poorly described family of diatoms, are common inhabitants of the shallow marine littoral zone, occurring either in the sediments or as epiphytes. Previous molecular phylogenies of the Plagiogrammaceae were inferred but included only up to six genera: Plagiogramma, Dimeregramma, Neofragilaria, Talaroneis, Psammogramma and Psammoneis. In this paper, we describe a new plagiogrammoid genus, Orizaformis, obtained from Bohai Sea (China) and present molecular phylogenies of the family based on three and four genes (nuclear-encoded large and small subunit ribosomal RNAs and chloroplast-encoded rbcL and psbC). Also included in the new phylogenies is Glyphodesmis. The phylogenies suggest that the Plagiogrammaceae is composed of two major clades: one consisting of Talaroneis, Orizaformis and Psammoneis, and the second of Glyphodesmis, Psammogramma, Neofragilaria, Dimeregramma and Plagiogramma. In addition, we describe three new species within established genera: Psammoneis obaidii, which was collected from the Red Sea, Saudi Arabia; and Neofragilaria stilus and Talaroneis biacutifrons from the Mozambique Channel, Indian Ocean, and illustrate two new combination taxa: Neofragilaria anomala and Neofragilaria lineata. Our observations suggest that the biodiversity of the family is strongly needed to be researched, and the phylogenetic analyses provide a useful framework for future studies of Plagiogrammaceae.
Resumo:
Plagiogrammaceae, a poorly described family of diatoms, are common inhabitants of the shallow marine littoral zone, occurring either in the sediments or as epiphytes. Previous molecular phylogenies of the Plagiogrammaceae were inferred but included only up to six genera: Plagiogramma, Dimeregramma, Neofragilaria, Talaroneis, Psammogramma and Psammoneis. In this paper, we describe a new plagiogrammoid genus, Orizaformis, obtained from Bohai Sea (China) and present molecular phylogenies of the family based on three and four genes (nuclear-encoded large and small subunit ribosomal RNAs and chloroplast-encoded rbcL and psbC). Also included in the new phylogenies is Glyphodesmis. The phylogenies suggest that the Plagiogrammaceae is composed of two major clades: one consisting of Talaroneis, Orizaformis and Psammoneis, and the second of Glyphodesmis, Psammogramma, Neofragilaria, Dimeregramma and Plagiogramma. In addition, we describe three new species within established genera: Psammoneis obaidii, which was collected from the Red Sea, Saudi Arabia; and Neofragilaria stilus and Talaroneis biacutifrons from the Mozambique Channel, Indian Ocean, and illustrate two new combination taxa: Neofragilaria anomala and Neofragilaria lineata. Our observations suggest that the biodiversity of the family is strongly needed to be researched, and the phylogenetic analyses provide a useful framework for future studies of Plagiogrammaceae.
Resumo:
Over the years, many reviews of different aspects of diatom biology, ecology and evolution have appeared. Since 1993 many molecular trees have been produced to infer diatom phylogeny. In 2004, Medlin & Kaczmarska revised the systematics of the diatoms based on more than 20 years of consistent recovery of two major clades of diatoms that did not correspond to a traditional concept of centrics and pennates and established three classes of diatoms: Clade 1 = Coscinodiscophyceae (radial centrics) and Clade 2 = Mediophyceae (polar centrics + radial Thalassiosirales) and Bacillariophyceae (pennates). However, under certain analytical conditions, an alternative view of diatom evolution, a grades of clades, has been recovered that suggests a gradual evolution from centric to pennate symmetry. These two schemes of diatom evolution are evaluated in terms of whether or not the criteria advocated by Medlin & Kaczmarska that should be met to recover monophyletic classes have been used. The monophyly of the three diatom classes can only be achieved if (1) a secondary structure of the small subunit (SSU) rRNA gene was used to construct the alignment and not an alignment based on primary structure and (2) multiple outgroups were used. These requirements have not been met in each study of diatom evolution; hence, the grade of clades, which is useful in reconstructing the sequence of evolution, is not useful for accepting the new classification of the diatoms. Evidence for how these two factors affect the recovery of the three monophyletic classes is reviewed here. The three classes have been defined by clear morphological differences primarily based on gametangia and auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. New evidence supporting the three clades is reviewed. Other features of the cell are examined to determine whether they can also be used to support the monophyly of the three classes.
Resumo:
Over the years, many reviews of different aspects of diatom biology, ecology and evolution have appeared. Since 1993 many molecular trees have been produced to infer diatom phylogeny. In 2004, Medlin & Kaczmarska revised the systematics of the diatoms based on more than 20 years of consistent recovery of two major clades of diatoms that did not correspond to a traditional concept of centrics and pennates and established three classes of diatoms: Clade 1 = Coscinodiscophyceae (radial centrics) and Clade 2 = Mediophyceae (polar centrics + radial Thalassiosirales) and Bacillariophyceae (pennates). However, under certain analytical conditions, an alternative view of diatom evolution, a grades of clades, has been recovered that suggests a gradual evolution from centric to pennate symmetry. These two schemes of diatom evolution are evaluated in terms of whether or not the criteria advocated by Medlin & Kaczmarska that should be met to recover monophyletic classes have been used. The monophyly of the three diatom classes can only be achieved if (1) a secondary structure of the small subunit (SSU) rRNA gene was used to construct the alignment and not an alignment based on primary structure and (2) multiple outgroups were used. These requirements have not been met in each study of diatom evolution; hence, the grade of clades, which is useful in reconstructing the sequence of evolution, is not useful for accepting the new classification of the diatoms. Evidence for how these two factors affect the recovery of the three monophyletic classes is reviewed here. The three classes have been defined by clear morphological differences primarily based on gametangia and auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. New evidence supporting the three clades is reviewed. Other features of the cell are examined to determine whether they can also be used to support the monophyly of the three classes.
Resumo:
The coccolithophore genus Gephyrocapsa contains a cosmopolitan assemblage of pelagic species, including the bloom-forming Gephyrocapsa oceanica, and is closely related to the emblematic coccolithophore Emiliania huxleyi within the Noëlaerhabdaceae. These two species have been extensively studied and are well represented in culture collections, whereas cultures of other species of this family are lacking. We report on three new strains of Gephyrocapsa isolated into culture from samples from the Chilean coastal upwelling zone using a novel flow cytometric single-cell sorting technique. The strains were characterized by morphological analysis using scanning electron microscopy and phylogenetic analysis of 6 genes (nuclear 18S and 28S rDNA, plastidial 16S and tufA, and mitochondrial cox1 and cox3 genes). Morphometric features of the coccoliths indicate that these isolates are distinct from G. oceanica and best correspond to G. muellerae. Surprisingly, both plastidial and mitochondrial gene phylogenies placed these strains within the E. huxleyi clade and well separated from G. oceanica isolates, making Emiliania appear polyphyletic. The only nuclear sequence difference, 1 bp in the 28S rDNA region, also grouped E. huxleyi with the new Gephyrocapsa isolates and apart from G. oceanica. Specifically, the G. muellerae morphotype strains clustered with the mitochondrial β clade of E. huxleyi, which, like G. muellerae, has been associated with cold (temperate and sub-polar) waters. Among putative evolutionary scenarios that could explain these results we discuss the possibility that E. huxleyi is not a valid taxonomic unit, or, alternatively the possibility of past hybridization and introgression between each E. huxleyi clade and older Gephyrocapsa clades. In either case, the results support the transfer of Emiliania to Gephyrocapsa. These results have important implications for relating morphological species concepts to ecological and evolutionary units of diversity.