5 resultados para Moore-Penrose generalized inverse
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.
Resumo:
An inverse food-web model for the western Antarctic Peninsula (WAP) pelagic food web was constrained with data from Palmer Long Term Ecological Research (PAL-LTER) project annual austral summer sampling cruises. Model solutions were generated for 2 regions with Adelie penguin Pygoscelis adeliae colonies presenting different population trends (a northern and a southern colony) for a 12 yr period (1995-2006). Counter to the standard paradigm, comparisons of carbon flow through bacteria, microzooplankton, and krill showed that the diatom-krill-top predator food chain is not the dominant pathway for organic carbon exchanges. The food web is more complex, including significant contributions by microzooplankton and the microbial loop. Using both inverse model results and network indices, it appears that in the northern WAP the food web is dominated by the microbial food web, with a temporal trend toward its increasing importance. The dominant pathway for the southern WAP food web varies from year to year, with no detectable temporal trend toward dominance of microzooplankton versus krill. In addition, sensitivity analyses indicated that the northern colony of Adelie penguins, whose population size has been declining over the past 35 yr, appears to have sufficient krill during summer to sustain its basic metabolic needs and rear chicks, suggesting the importance of other processes in regulating the Adelie population decline.
Resumo:
Sea ice in the western Antarctic Peninsula (WAP) region is both highly variable and rapidly changing. In the Palmer Station region, the ice season duration has decreased by 92 d since 1978. The sea-ice changes affect ocean stratification and freshwater balance and in turn impact every component of the polar marine ecosystem. Long-term observations from the WAP nearshore and offshore regions show a pattern of chlorophyll (Chl) variability with three to five years of negative Chl anomalies interrupted by one or two years of positive anomalies (high and low Chl regimes). Both field observations and results from an inverse food-web model show that these high and low Chl regimes differed significantly from each other, with high primary productivity and net community production (NCP) and other rates associated with the high Chl years and low rates with low Chl years. Gross primary production rates (GPP) averaged 30 mmolC.m-2.d-1 in the low Chl years and 100 mmolC.m-2.d-1 in the high Chl years. Both large and small phytoplankton were more abundant and more productive in high Chl years than in low Chl years. Similarly, krill were more important as grazers in high Chl years, but did not differ from microzooplankton in high or low Chl years. Microzooplankton did not differ between high and low Chl years. Net community production differed significantly between high and low Chl years, but mobilized a similar proportion of GPP in both high and low Chl years. The composition of the NCP was uniform in high and low Chl years. These results mphasize the importance of microbial components in the WAP plankton system and suggest that food webs dominated by small phytoplankton can have pathways that funnel production into NCP, and likely, export.