11 resultados para Models and modeling

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progress in microbiology has always been driven by technological advances, ever since Antonie van Leeuwenhoek discovered bacteria by making an improved compound microscope. However, until very recently we have not been able to identify microbes and record their mostly invisible activities, such as nutrient consumption or toxin production on the level of the single cell, not even in the laboratory. This is now changing with the rapid rise of exciting new technologies for single-cell microbiology (1, 2), which enable microbiologists to do what plant and animal ecologists have been doing for a long time: observe who does what, when, where, and next to whom. Single cells taken from the environment can be identified and even their genomes sequenced. Ex situ, their size, elemental, and biochemical composition, as well as other characteristics can be measured with high-throughput and cells sorted accordingly. Even better, individual microbes can be observed in situ with a range of novel microscopic and spectroscopic methods, enabling localization, identification, or functional characterization of cells in a natural sample, combined with detecting uptake of labeled compounds. Alternatively, they can be placed into fabricated microfluidic environments, where they can be positioned, exposed to stimuli, monitored, and their interactions controlled “in microfluido.” By introducing genetically engineered reporter cells into a fabricated landscape or a microcosm taken from nature, their reproductive success or activity can be followed, or their sensing of their local environment recorded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a unique view of mackerel (Scomber scombrus) in the North Sea based on a new time series of larvae caught by the Continuous Plankton Recorder (CPR) survey from 1948-2005, covering the period both before and after the collapse of the North Sea stock. Hydrographic backtrack modelling suggested that the effect of advection is very limited between spawning and larvae capture in the CPR survey. Using a statistical technique not previously applied to CPR data, we then generated a larval index that accounts for both catchability as well as spatial and temporal autocorrelation. The resulting time series documents the significant decrease of spawning from before 1970 to recent depleted levels. Spatial distributions of the larvae, and thus the spawning area, showed a shift from early to recent decades, suggesting that the central North Sea is no longer as important as the areas further west and south. These results provide a consistent and unique perspective on the dynamics of mackerel in this region and can potentially resolve many of the unresolved questions about this stock

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intensity and location of Sun glint in two Medium Resolution Imaging Spectrometer (MERIS) images was modeled using a radiative transfer model that includes elevation features as well as the slope of the sea surface. The results are compared to estimates made using glint flagging and correction approaches used within standard atmospheric correction processing code. The model estimate gives a glint pattern with a similar width but lower peak level than any current method, or than that estimated by a radiative transfer model with surfaces that include slope but not height. The MERIS third reprocessing recently adopted a new slope statistics model for Sun glint correction; the results show that this model is an outlier with respect to both the elevation model and other slope statistics models and we recommend that its adoption should be reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling of global climate change is moving from global circulation model (GCM)-type projections with coupled biogeochemical models to projections of ecological responses, including food web and upper trophic levels. Marine and coastal ecosystems are highly susceptible to the impacts of global climate change and also produce significant ecosystem services. The effects of global climate change on coastal and marine ecosystems involve a much wider array of effects than the usual temperature, sea level rise, and precipitation. This paper is an overview for a collection of 12 papers that examined various aspects of global climate change on marine ecosystems and comprise this special issue. We summarized the major features of the models and analyses in the papers to determine general patterns. A wide range of ecosystems were simulated using a diverse set of modeling approaches. Models were either 3-dimensional or used a few spatial boxes, and responses to global climate change were mostly expressed as changes from a baseline condition. Three issues were identified from the across-model comparison: (a) lack of standardization of climate change scenarios, (b) the prevalence of site-specific and even unique models for upper trophic levels, and (c) emphasis on hypothesis evaluation versus forecasting. We discuss why these issues are important as global climate change assessment continues to progress up the food chain, and, when possible, offer some initial steps for going forward.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine legislation is becoming more complex and marine ecosystem-based management is specified in national and regional legislative frameworks. Shelf-seas community and ecosystem models (hereafter termed ecosystem models) are central to the delivery of ecosystem-based management, but there is limited uptake and use of model products by decision makers in Europe and the UK in comparison with other countries. In this study, the challenges to the uptake and use of ecosystem models in support of marine environmental management are assessed using the UK capability as an example. The UK has a broad capability in marine ecosystem modelling, with at least 14 different models that support management, but few examples exist of ecosystem modelling that underpin policy or management decisions. To improve understanding of policy and management issues that can be addressed using ecosystem models, a workshop was convened that brought together advisors, assessors, biologists, social scientists, economists, modellers, statisticians, policy makers, and funders. Some policy requirements were identified that can be addressed without further model development including: attribution of environmental change to underlying drivers, integration of models and observations to develop more efficient monitoring programmes, assessment of indicator performance for different management goals, and the costs and benefit of legislation. Multi-model ensembles are being developed in cases where many models exist, but model structures are very diverse making a standardised approach of combining outputs a significant challenge, and there is a need for new methodologies for describing, analysing, and visualising uncertainties. A stronger link to social and economic systems is needed to increase the range of policy-related questions that can be addressed. It is also important to improve communication between policy and modelling communities so that there is a shared understanding of the strengths and limitations of ecosystem models.