6 resultados para Mirabilis jalapa starch
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
On the occurence of the nudibranch Hancockia at Plymouth. Breeding of fish in the aquarium. The ammount of fat in different fishes. Notes on Saphenia mirabilis, Haeckel and Pleurophyllidia Loveni, Bergh.
Resumo:
Notes on: Virgularia mirabilis and Coryphella smaragdina
Resumo:
During the 1970s and 1980s, the late Dr Norman Holme undertook extensive towed sledge surveys in the English Channel and some in the Irish Sea. Only a minority of the resulting images were analysed and reported before his death in 1989 but logbooks, video and film material has been archived in the National Marine Biological Library (NMBL) in Plymouth. A study was therefore commissioned by the Joint Nature Conservation Committee and as a part of the Mapping European Seabed Habitats (MESH) project to identify the value of the material archived and the procedure and cost to undertake further work (Phase 1 of the study reported here: Oakley & Hiscock, 2005). Some image analysis was undertaken as a part of Phase 1. Phase 2 (this report) was to further analyse selected images. Having determined in Phase 1 that only the 35 mm photographic transparencies provided sufficient clarity to identify species and biotopes, the tows selected for analysis were ones where 35mm images had been taken. The tows selected for analysis of images were mainly in the vicinity of Plymouth and especially along the area between Rame Head and the region of the Eddystone. The 35 mm films were viewed under a binocular microscope and the taxa that could be recognised recorded in note form. Twenty-five images were selected for inclusion in the report. Almost all of the images were of level sediment seabed. Where rocks were included, it was usually unplanned and the sled was hauled before being caught or damaged. The main biotopes or biotope complexes identified were: SS.SMU.CSaMu. Circalittoral sandy mud. Extensively present between the shore and the Eddystone Reef complex and at depths of about 48 to 52 m. At one site offshore of Plymouth Sound, the turret shell Turritella communis was abundant. In some areas, this biotope had dense anemones, Mesacmaea mitchelli and (more rarely) Cerianthus lloydii. Queen scallops, Aequipecten opercularis and king scallops, Pecten maximus, were sometimes present in small numbers. Hard substratum species such as hydroids, dead mens fingers Alcyonium digitatum and the cup coral Caryophyllia smithii occurred in a few places, probably attached to shells or stones beneath the surface. South of the spoil ground off Hilsea Point at 57m depth, the sediment was muddier but is still assigned to this biotope complex. It is notable that three small sea pens, most likely Virgularia mirabilis, were seen here. SS.SMx.CMx. Circalittoral mixed sediment. Further offshore but at about the same depth as SS.SMU.CSaMu occurred, coarse gravel with some silt was present. The sediment was characterised must conspicuously by small queen scallops, Aequipecten opercularis. Peculiarly, there were ‘bundles’ of the branching bryozoan Cellaria sp. – a species normally found attached to rock. It could not be seen whether these bundles of Cellaria had been brought-together by terebellid worms but it is notable that Cellaria is recorded in historical surveys. As with many other sediments, there were occasional brittle stars, Ophiocomina nigra and Ophiura ophiura. Where sediments were muddy, the burrowing anemone Mesacmaea mitchelli was common. Where pebbles or cobbles occurred, there were attached species such as Alcyonium digitatum, Caryophyllia smithii and the fleshy bryozoan Alcyonidium diaphanum. Undescribed biotope. Although most likely a part of SS.SMx.CMx, the biotope visually dominated by a terebellid worm believed to be Thelepus cincinnatua, is worth special attention as it may be an undescribed biotope. The biotope occurred about 22 nautical miles south of the latitude of the Eddystone and in depths in excess of 70 m. SS.SCS.CCS.Blan. Branchiostoma lanceolatum in circalittoral coarse sand with shell gravel at about 48m depth and less. This habitat was the ‘classic’ ‘Eddystone Shell Gravel’ which is sampled for Branchiostoma lanceolatum. However, no Branchiostoma lanceolatum could be seen. The gravel was almost entirely bare of epibiota. There were occasional rock outcrops or cobbles which had epibiota including encrusting calcareous algae, the sea fan Eunicella verrucosa, cup corals, Caryophyllia smithii, hydroids and a sea urchin Echinus esculentus. The variety of species visible on the surface is small and therefore identification to biotope not usually possible. Historical records from sampling surveys that used grabs and dredges at the end of the 19th century and early 20th century suggest similar species present then. Illustrations of some of the infaunal communities from work in the 1920’s is included in this report to provide a context to the epifaunal photographs.
Resumo:
In 2012, a controlled sub-seabed release of carbon dioxide (CO2) was conducted in Ardmucknish Bay, a shallow (12 m) coastal bay on the west coast of Scotland. During the experiment, CO2 gas was released 12 m below the seabed for 37 days, causing significant disruption to sediment and water carbonate chemistry as the gas passed up through the sediment and into the overlying water. One of the aims of the study was to investigate how the impacts caused by leakage from geological CO2 Capture and Storage (CCS) could be detected and quantified in the context of natural heterogeneity and dynamics. To do this underwater photography was used to analyze (i) the benthic megafaunal response to the CO2 release and (ii) the dynamics of the CO2 bubble streams, emerging from the seabed into the overlying water column. The frequently observed megafauna species in the study area were Virgularia mirabilis (Cnidaria), Turritella communis (Mollusca), Asterias rubens (Echinodermata), Pagurus bernhardus (Crustacea), Liocarcinus depurator (Crustacea), and Gadus morhua (Osteichthyes). No discernable abnormal behavior was observed for these megafauna, in any of the zones investigated, during or after the CO2 release. Time-lapse photography revealed that the intensity and presence of the CO2 bubble plume was affected by the tides, with the most active bubbling seen at low tides and the larger hydrostatic pressure at high tide suppressing CO2 bubbling from the seabed.
Resumo:
1. The effect of habitat fragmentation was investigated in two adjacent, yet separate, intertidal Zostera marina beds in the Salcombe Estuary, Devon, UK. The seagrass bed on the west bank comprised a continuous meadow of ca. 2.3 ha, whilst the bed on the east bank of the estuary was fragmented into patches of 6–9 m2.2. Three 10 cm diameter core samples for infaunal macroinvertebrates were taken from three stations within each bed. No significant difference was found in univariate community parameters between beds, or in measured seagrass parameters. However, multivariate analysis revealed a significant difference in community composition, due mainly to small changes in species abundance rather than differences in the species present.3. The species contributing most to the dissimilarity between the two communities were polychaetes generally associated with unvegetated habitats (e.g. Magelona mirabilis) and found to be more common in the fragmented bed.4. A significant difference in median grain size and sorting coefficient was recorded between the two beds, and median grain size was found to be the variable best explaining multivariate community patterns.5. The results of the study provide evidence for the effects of habitat fragmentation on the communities associated with seagrass beds, habitats which are of high conservation importance. As the infaunal community is perhaps intuitively the component least likely to be affected by fragmentation at the scale observed, the significant difference in community composition recorded has consequences for more sensitive and high-profile parts of the biota (e.g. fish), and thus for the conservation of seagrass habitats and their associated communities.