117 resultados para Middle North Shore of the Saint Lawrence
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Climatic variability on the European Continental Shelf is dominated by events over the North Atlantic Ocean, and in particular by the North Atlantic Oscillation (NAO). The NAO is essentially a winter phenomenon, and its effects will be felt most strongly by populations for which winter conditions are critical. One example is the copepod Calanus finmarchicus, whose northern North Sea populations overwinter at depth in the North Atlantic. Its annual abundance in this region is strongly dependent on water transports at the end of the winter, and hence on the NAO index. Variations in the NAO give rise to changes in the circulation of the North Atlantic Ocean, with additional perturbations arising from El Ni (n) over tildeo - Southern Oscillation (ENSO) events in the Pacific, and these changes can be delayed by several years because of the adjustment time of the ocean circulation. One measure of the circulation is the latitude of the north wall of the Gulf Stream (GSNW index). Interannual variations in the plankton of the Shelf Seas show strong correlations with the fluctuations of the GSNW index, which are the result of Atlantic-wide atmospheric processes. These associations imply that the interannual variations are climatically induced rather than due to natural fluctuations of the marine ecosystem, and that the zooplankton populations have not been significantly affected by anthropogenic processes such as nutrient enrichment or fishing pressure. While the GSNW index represents a response to atmospheric changes over two or more years, the zooplankton populations correlated with it have generation times of a few weeks. The simplest explanation for the associations between the zooplankton and the GSNW index is that the plankton are responding to weather patterns propagating downstream from the Gulf Stream system. It seems that these meteorological processes operate in the spring. Although it has been suggested that there was a regime shift in the North Sea in the late 1980s, examination of the time-series by the cumulative sum (CUSUM) technique shows that any changes in the zooplankton of the central and northern North Sea are consistent with the background climatic variability. The abundance of total copepods increased during this period but this change does not represent a dramatic change in ecosystem processes. It is possible some change may have occurred at the end of the time-series in the years 1997 and 1998.
Resumo:
In the more than 50 years that the Continuous Plankton Recorder (CPR) survey has operated on a regular monthly basis in the north-east Atlantic and North Sea, large changes have been witnessed in the planktonic ecosystem. These changes have taken the form of long-term trends in abundance for certain species or stepwise changes for others, and in many cases are correlated with a mode of climatic variability in the North Atlantic, either: (1) the North Atlantic Oscillation (NAO), a basin-scale atmospheric alteration of the pressure field between the Azores high pressure cell and the Icelandic Low; or (2) the Gulf Stream Index (GSI), which measures the latitudinal position of the north wall of the Gulf Stream. Recent work has shown that the changes in the GSI are coupled with the NAO and Pacific Southern Oscillation with a 2 year lag. The plankton variability is also possibly linked to changes observed in the distribution and flux of water masses in the surface, intermediate and deep waters of the North Atlantic. For example, in the last two decades, the extent and location of the formation of North Atlantic Deep Water, Labrador Sea Intermediate Water and Norwegian Sea intermediate and upper-layer water has altered considerably. This paper discusses the extent to which observed changes in plankton abundance and distribution may be linked to this basin-scale variability in hydrodynamics. The results are also placed within the context of global climate warming and the possible effects of the observed melting of Arctic permafrost and sea ice on the subpolar North Atlantic.