11 resultados para Microbial biomass carbon

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uptake of 14C glucose by natural microbial populations has been studied in the Severn Estuary and Bristol Channel, U.K.; the turbidity (suspended solids) in the estuary varied between < 5 mg · 1−1 at the seaward extremity to >800 mg · 1−1 in the estuary proper. The heterotrophic potential, Vm, was found to correlate with turbidity and particulate organic carbon but there was no correlation between microbial biomass, as assessed by plate counts, and turbidity or Vm; measurement of Vm ranged from 0.9 × 10−4 to 288 × 10−4μgC·1−1·h−1 and turnover time from <2 to >100 h. In 17 out of 42 experiments, the uptake of 14C glucose did not conform to Michaelis kinetics and in five of these experiments the data suggested that there may be a threshold of glucose concentration below which there is no uptake.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parasites are not typically considered to be important components of polar marine ecosystems. It was therefore surprising when 18S rDNA surveys of protists in the West Antarctic Peninsula in winter revealed high abundances of parasite sequences. Parasite sequences made up, on average, over half (52%) of sequence reads in samples from deep water in winter. Winter surface water and sediment samples contained relatively fewer, but still strikingly high, parasite sequence reads (13 and 9%, respectively), while surface water samples in summer contained fewer parasite sequences (1.8%). A total of 1028 distinct parasite Operational Taxonomic Units were observed in winter, with the largest abundances and diversities within Syndiniales groups I and II, including Amoebophrya. Less abundant parasite sequence groups included Apicomplexa, Blastodinium, Chytriodinium, Cryptocaryon, Paradinium, Perkinsidae, Pirsonia and Ichthyophonae. Parasite sequence distributions suggested interactions with known hosts, such as diatom parasites which were mainly in the sediments, where resting spores of Chaetoceros spp. diatoms were abundant. Syndiniales sequences were correlated with radiolarian sequences, suggesting parasite–host interactions. The abundant proportions of parasite sequences indicate a potentially important role for parasites in the Antarctic marine ecosystem, with implications for plankton population dynamics, the role of the microbial loop, carbon flows and ecosystem responses to ongoing anthropogenic climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parasites are not typically considered to be important components of polar marine ecosystems. It was therefore surprising when 18S rDNA surveys of protists in the West Antarctic Peninsula in winter revealed high abundances of parasite sequences. Parasite sequences made up, on average, over half (52%) of sequence reads in samples from deep water in winter. Winter surface water and sediment samples contained relatively fewer, but still strikingly high, parasite sequence reads (13 and 9%, respectively), while surface water samples in summer contained fewer parasite sequences (1.8%). A total of 1028 distinct parasite Operational Taxonomic Units were observed in winter, with the largest abundances and diversities within Syndiniales groups I and II, including Amoebophrya. Less abundant parasite sequence groups included Apicomplexa, Blastodinium, Chytriodinium, Cryptocaryon, Paradinium, Perkinsidae, Pirsonia and Ichthyophonae. Parasite sequence distributions suggested interactions with known hosts, such as diatom parasites which were mainly in the sediments, where resting spores of Chaetoceros spp. diatoms were abundant. Syndiniales sequences were correlated with radiolarian sequences, suggesting parasite–host interactions. The abundant proportions of parasite sequences indicate a potentially important role for parasites in the Antarctic marine ecosystem, with implications for plankton population dynamics, the role of the microbial loop, carbon flows and ecosystem responses to ongoing anthropogenic climate change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have made daily measurements of phytoplankton pigments, size-fractionated (<2 and >2-μm) carbon fixation and chlorophyll-a concentration during four Atlantic Meridional Transect (AMT) cruises in 2003–04. Surface rates of carbon fixation ranged from <0.2-mmol C m−3 d−1 in the subtropical gyres to 0.2–0.5-mmol C m−3 d−1 in the tropical equatorial Atlantic. Significant intercruise variability was restricted to the subtropical gyres, with higher chlorophyll-a concentrations and carbon fixation in the subsurface chlorophyll maximum during spring in either hemisphere. In surface waters, although picoplankton (<2-μm) represented the dominant fraction in terms of both carbon fixation (50–70%) and chlorophyll-a (80–90%), nanoplankton (>2-μm) contributions to total carbon fixation (30–50%) were higher than to total chlorophyll-a (10–20%). However, in the subsurface chlorophyll maximum picoplankton dominated both carbon fixation (70–90%) and chlorophyll-a (70–90%). Thus, in surface waters chlorophyll-normalised carbon fixation was 2–3 times higher for nanoplankton and differences in picoplankton and nanoplankton carbon to chlorophyll-a ratios may lead to either higher or similar growth rates. These low chlorophyll-normalised carbon fixation rates for picoplankton may also reflect losses of fixed carbon (cell leakage or respiration), decreases in photosynthetic efficiency, grazing losses during the incubations, or some combination of all these. Comparison of nitrate concentrations in the subsurface chlorophyll maximum with estimates of those required to support the observed rates of carbon fixation (assuming Redfield stoichiometry) indicate that primary production in the chlorophyll maximum may be light rather than nutrient limited.