6 resultados para Methanol oxidation

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this research was to make the first depth profiles of the microbial assimilation of methanol carbon and its oxidation to carbon dioxide and use as an energy source from the microlayer to 1000 m. Some of the highest reported methanol oxidation rate constants of 0.5–0.6 d−1 were occasionally found in the microlayer and immediately underlying waters (10 cm depth), albeit these samples also showed the greatest heterogeneity compared to other depths down to 1000 m. Methanol uptake into the particulate phase was exceptionally low in microlayer samples, suggesting that any methanol utilised by microbes in this environment is for energy generation. The sea surface microlayer and 10 cm depth also showed a higher proportion of bacteria with a low DNA content, and bacterial leucine uptake rates in surface microlayer samples were either less than or the same as those in the underlying 10 cm layer. The average methanol oxidation and particulate rates were however statistically the same throughout the depths sampled, although the latter were highly variable in the near-surface 0.25–2 m compared to deeper depths. The statistically significant relationship demonstrated between uptake of methanol into particles and bacterial leucine incorporation suggests that many heterotrophic bacteria could be using methanol carbon for cellular growth. On average, methanol bacterial growth efficiency (BGEm) in the top 25 m of the water column is 6% and decreases with depth. Although, for microlayer and 10 cm-depth samples, BGEm is less than the near-surface 25–217 cm, possibly reflecting increased environmental UV stress resulting in increased maintenance costs, i.e. energy required for survival. We conclude that microbial methanol uptake rates, i.e. loss from seawater, are highly variable, particularly close to the seawater surface, which could significantly impact upon seawater concentrations and hence the air–sea flux.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this research was to make the first depth profiles of the microbial assimilation of methanol carbon and its oxidation to carbon dioxide and use as an energy source from the microlayer to 1000 m. Some of the highest reported methanol oxidation rate constants of 0.5–0.6 d−1 were occasionally found in the microlayer and immediately underlying waters (10 cm depth), albeit these samples also showed the greatest heterogeneity compared to other depths down to 1000 m. Methanol uptake into the particulate phase was exceptionally low in microlayer samples, suggesting that any methanol utilised by microbes in this environment is for energy generation. The sea surface microlayer and 10 cm depth also showed a higher proportion of bacteria with a low DNA content, and bacterial leucine uptake rates in surface microlayer samples were either less than or the same as those in the underlying 10 cm layer. The average methanol oxidation and particulate rates were however statistically the same throughout the depths sampled, although the latter were highly variable in the near-surface 0.25–2 m compared to deeper depths. The statistically significant relationship demonstrated between uptake of methanol into particles and bacterial leucine incorporation suggests that many heterotrophic bacteria could be using methanol carbon for cellular growth. On average, methanol bacterial growth efficiency (BGEm) in the top 25 m of the water column is 6% and decreases with depth. Although, for microlayer and 10 cm-depth samples, BGEm is less than the near-surface 25–217 cm, possibly reflecting increased environmental UV stress resulting in increased maintenance costs, i.e. energy required for survival. We conclude that microbial methanol uptake rates, i.e. loss from seawater, are highly variable, particularly close to the seawater surface, which could significantly impact upon seawater concentrations and hence the air–sea flux.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The xoxF gene, encoding a pyrroloquinoline quinone-dependent methanol dehydrogenase, is found in all known proteobacterial methylotrophs. In several newly discovered methylotrophs, XoxF is the active methanol dehydrogenase, catalysing the oxidation of methanol to formaldehyde. Apart from that, its potential role in methylotrophy and carbon cycling is unknown. So far, the diversity of xoxF in the environment has received little attention. We designed PCR primer sets targeting clades of the xoxF gene, and used 454 pyrosequencing of PCR amplicons obtained from DNA of four coastal marine environments for a unique assessment of the diversity of xoxF in these habitats. Phylogenetic analysis of the data obtained revealed a high diversity of xoxF genes from two of the investigated clades, and substantial differences in sequence composition between environments. Sequences were classified as being related to a wide range of both methylotrophs and non-methylotrophs from Alpha-, Beta- and Gammaproteobacteria. The most prominent sequences detected were related to the family Rhodobacteraceae, the genus Methylotenera and the OM43 clade of Methylophilales, and are thus related to organisms that employ XoxF for methanol oxidation. Furthermore, our analyses revealed a high degree of so far undescribed sequences, suggesting a high number of unknown species in these habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetone is an important oxygenated volatile organic compound (OVOC) in the troposphere where it influences the oxidizing capacity of the atmosphere. However, the air-sea flux is not well quantified, in part due to a lack of knowledge regarding which processes control oceanic concentrations, and, specifically whether microbial oxidation to CO2 represents a significant loss process. We demonstrate that 14C labeled acetone can be used to determine microbial oxidation to 14CO2. Linear microbial rates of acetone oxidation to CO2 were observed for between 0.75-3.5 h at a seasonally eutrophic coastal station located in the western English Channel (L4). A kinetic experiment in summer at station L4 gave a Vmax of 4.1 pmol L-1 h-1, with a Km constant of 54 pM. We then used this technique to obtain microbial acetone loss rates ranging between 1.2 and 42 pmol L-1 h-1.(monthly averages) over an annual cycle at L4, with maximum rates observed during winter months. The biological turnover time of acetone (in situ concentration divided by microbial oxidation rate) in surface waters varied from ~3 days in February 2011, when in situ concentrations were 3 ± 1 nM, to >240 days in June 2011, when concentrations were more than twofold higher at 7.5 ± 0.7 nM. These relatively low marine microbial acetone oxidation rates, when normalized to in situ concentrations, suggest that marine microbes preferentially utilize other OVOCs such as methanol and acetaldehyde.