18 resultados para Metals--Effect of temperature on.

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of temperature on respiration rate has been established, using Cartesian divers, for the meiofaunal sabellid polychaeteManayunkia aestuarina, the free-living nematodeSphaerolaimus hirsutus and the harpacticoid copepodTachidius discipes from a mudflat in the Lynher estuary, Cornwall, U.K. Over the temperature range normally experienced in the field, i.e. 5–20° C the size-compensated respiration rate (R c) was related to the temperature (T) in °C by the equation Log10 R c=-0.635+0.0339T forManayunkia, Log10 R c=0.180+0.0069T forSphaerolaimus and Log10 R c=-0.428+0.0337T forTachidius, being equivalent toQ 10 values of 2.19, 1.17 and 2.17 respectively. In order to derive the temperature response forManayunkia a relationship was first established between respiration rate and body size: Log10 R=0.05+0.75 Log10 V whereR=respiration in nl·O2·ind-1·h-1 andV=body volume in nl. TheQ 10 values are compared with values for other species derived from the literature. From these limited data a dichotomy emerges: species with aQ 10≏2 which apparently feed on diatoms and bacteria, the abundance of which are subject to large short term variability, and species withQ 10≏1 apparently dependent on more stable food sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of population growth, generation time, fecundity and respiration in laboratory culture have been made, in relation to temperature and salinity, for the nematode Diplolaimelloides bruciei Hopper, a species normally associated with decayed material of the marsh grass Spartina. The intrinsic rate of increase (r) is high: it is related to temperature between 5° and 25°C by a sigmoid function which is steepest between 10° and 15°C, and is maximum at 26‰ salinity. Generation time is related to temperature by a power function and is shortest at 26‰ salinity. The effect of temperature on generation time is consistent with other data for marine nematodes, and the steep slope of r against temperature is largely due to the marked effect of temperature on fecundity. A sex ratio of 2:1 in favour of males is maintained regardless of culture conditions or population density. Respiration increases exponentially with temperature between 5° and 25°C, with a very high Q10 (3.94), but is not affected by salinity. At 30°C respiration is no higher than at 25°C. A high and relatively stable production efficiency (P/A) is maintained between 10 and 30°C with a maximum of 87% at 15°C; there is a stable reproductive effort (Pr/A) of about 10%. At 5°C both these ratios are zero. Data for the harpacticoid copepod Tachidius discipes, derived from the literature, show that this too has a high and stable production efficiency, which may be a characteristic of meiofaunal species in general, but in this species efficiency is relatively high at 5°C. Many features of the energy balance in D. bruciei can be related to an opportunistic mode of life.