10 resultados para Membrane fouling

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the ocean in the cycling of oxygenated volatile organic compounds (OVOCs) remains largely unanswered due to a paucity of datasets. We describe the method development of a membrane inlet-proton transfer reaction/mass spectrometer (MI-PTR/MS) as an efficient method of analysing methanol, acetaldehyde and acetone in seawater. Validation of the technique with water standards shows that the optimised responses are linear and reproducible. Limits of detection are 27 nM for methanol, 0.7 nM for acetaldehyde and 0.3 nM for acetone. Acetone and acetaldehyde concentrations generated by MI-PTR/MS are compared to a second, independent method based on purge and trap-gas chromatography/flame ionisation detection (P&T-GC/FID) and show excellent agreement. Chromatographic separation of isomeric species acetone and propanal permits correction to mass 59 signal generated by the PTR/MS and overcomes a known uncertainty in reporting acetone concentrations via mass spectrometry. A third bioassay technique using radiolabelled acetone further supported the result generated by this method. We present the development and optimisation of the MI-PTR/MS technique as a reliable and convenient tool for analysing seawater samples for these trace gases. We compare this method with other analytical techniques and discuss its potential use in improving the current understanding of the cycling of oceanic OVOCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maritime transport and shipping are impacted negatively by biofouling, which can result in increased fuel consumption. Thus, costs for fouling reduction can be considered an investment to reduce fuel consumption. Anti-fouling measures also reduce the rate of introduction of non-indigenous species (NIS). Further mitigation measures to reduce the transport of NIS within ballast water and sediments impose additional costs. The estimated operational cost of NIS mitigation measures may represent between 1.6% and 4% of the annual operational cost for a ship operating on European seas, with the higher proportional costs in small ships. However, fouling by NIS may affect fuel consumption more than fouling by native species due to differences in species’ life-history traits and their resistance to antifouling coatings and pollution. Therefore, it is possible that the cost of NIS mitigation measures could be smaller than the cost from higher fuel consumption arising from fouling by NIS.