25 resultados para Marseille, Gulf of

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interannual and seasonal trends of zooplankton abundance and species composition were compared between the Bongo net and Continuous Plankton Recorder (CPR) time series in the Gulf of Maine. Data from 5799 Bongo and 3118 CPR samples were compared from the years 1978–2006. The two programs use different sampling methods, with the Bongo time series composed of bimonthly vertically integrated samples from locations throughout the region, while the CPR was towed monthly at 10 m depth on a transect that bisects the region. It was found that there was a significant correlation between the interannual (r = 0.67, P < 0.01) and seasonal (r = 0.95, P < 0.01) variability of total zooplankton counts. Abundance rankings of individual taxa were highly correlated and temporal trends of dominant copepods were similar between samplers. Multivariate analysis also showed that both time series equally detected major shifts in community structure through time. However, absolute abundance levels were higher in the Bongo and temporal patterns for many of the less abundant taxa groups were not similar between the two devices. The different mesh sizes of the samplers probably caused some of the discrepancies; but diel migration patterns, damage to soft bodied animals and avoidance of the small CPR aperture by some taxa likely contributed to the catch differences between the two devices. Nonetheless, Bongo data presented here confirm the previously published patterns found in the CPR data set, and both show that the abundance increase of the 1990s has been followed by average to below average levels from 2002 to 06.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies relating biodiversity to ecosystem processes typically do not take into account changes in biodiversity through time. Marine systems are highly dynamic, with biodiversity changing at diel, seasonal and inter-decadal timescales. We examined the dynamics of biodiversity in the Gulf of Maine pelagic zooplankton community. Taxonomic data came from the Gulf of Maine continuous plankton recorder (CPR) transect, spanning the years 1961–2006. The CPR transect also contains coincident information on temperature and phytoplankton biomass (measured by the phytoplankton color index). Taxonomic richness varied at all timescales considered. The relationships between temperature and richness, and between phytoplankton and richness, also depended on temporal scale. The temperature–richness relationship was monotonic at the multi-decadal scale, and tended to be hump-shaped at finer scales; the productivity–richness relationship was hump-shaped at the multi-decadal scale, and tended to be monotonic at finer scales. Seasonal biodiversity dynamics were linked to temperature; inter-decadal biodiversity dynamics were linked to phytoplankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nursery areas for juvenile fishes are often important for determining recruitment in marine populations by providing habitats that can maximize growth and thereby minimize mortality. Pacific ocean perch (POP, Sebastes alutus) have an extended juvenile period where they inhabit rocky nursery habitats. We examined POP nursery areas to link growth potential to recruitment. Juvenile POP were captured from nursery areas in 2004 and 2008, and estimated growth rates ranged from −0.19 to 0.60 g day−1 based on differences in size between June and August. Predicted growth rates from a bioenergetics model ranged from 0.05 to 0.49 g day−1 and were not significantly different than observed. Substrate preferences and the distribution of their preferred habitats were utilized to predict the extent of juvenile POP nursery habitat in the Gulf of Alaska. Based on densities of fish observed on underwater video transects and the spatial extent of nursery areas, we predicted 278 and 290 million juvenile POP were produced in 2004 and 2008. Growth potential for juvenile POP was reconstructed using the bioenergetics model, spring zooplankton bloom timing and duration and bottom water temperature for 1982–2008. When a single outlying recruitment year in 1986 was removed, growth potential experienced by juvenile POP in nursery areas was significantly correlated to the recruitment time-series from the stock assessment, explaining ∼30% of the variability. This research highlights the potential to predict recruitment using habitat-based methods and provides a potential mechanism for explaining some of the POP recruitment variability observed for this population.