28 resultados para Marketing Dynamics of a Hotel Tax: The Case of Chautauqua County
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The ERSEM model is one of the most established ecosystem models for the lower trophic levels of the marine food-web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North-Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic part of the marine ecosystem, including the microbial food-web, the carbonate system and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case-studies of mesocosm type simulations, water column implementations and a brief example of a full-scale application for the North-West European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.
Resumo:
The European Regional Seas Ecosystem Model (ERSEM) is one of the most established ecosystem models for the lower trophic levels of the marine food web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic parts of the marine ecosystem, including the microbial food web, the carbonate system, and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case studies of mesocosm-type simulations, water column implementations, and a brief example of a full-scale application for the north-western European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.
Resumo:
Rates of population increase in early spring and the sizes of overwintering stocks were calculated for the planktonic copepods Pseudocalanus elongatus and Acartia clausi for a set of areas covering the open waters of the north-east Atlantic Ocean and the North Sea for the period 1948 to 1979. For both species, the rates of population increase were higher in the open ocean than in the North Sea and appear to be related to temperature. The overwintering stocks in the North Sea were larger than those in the open ocean and are probably related to phytoplanton concentration. P. elongatus shows higher overwintering stocks and lower rates of population increase than A. clausi, resulting in different levels of persistence in the stocks of the two species. It is suggested that this difference in persistence is responsible for differences between the two species with respect to geographical distribution in summer and different patterns of year-to-year fluctuations in abundance.