72 resultados para Marine zooplankton
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
This series of three guides (of which this is Part 1) collates taxonomic identification information for the zooplankton groups recorded off south-west Britain , primarily for local identification and training purposes. However, because prevailing currents also bring oceanic zooplankton into the English Channel , the range of species sampled off Plymouth covers the majority found over the shallower parts of northern European continental shelf (excluding the Mediterranean Sea ), so the guides should be more widely useful and hopefully make tackling zooplankton identification easier for a wider audience. The commonest truly planktonic species and the most widely studied groups are covered in most detail, but some information is also included on benthic, epibenthic and parasitic species that are sampled occasionally. For all groups there is at least information on their morphology, guidance on their identification and bibliographies giving identification resources.
Resumo:
This series of three guides (of which this is Part 2) collates taxonomic identification information for the zooplankton groups recorded off south-west Britain , primarily for local identification and training purposes. However, because prevailing currents also bring oceanic zooplankton into the English Channel , the range of species sampled off Plymouth covers the majority found over the shallower parts of northern European continental shelf (excluding the Mediterranean Sea ), so the guides should be more widely useful and hopefully make tackling zooplankton identification easier for a wider audience. The commonest truly planktonic species and the most widely studied groups are covered in most detail, but some information is also included on benthic, epibenthic and parasitic species that are sampled occasionally. For all groups there is at least information on their morphology, guidance on their identification and bibliographies giving identification resources.
Resumo:
The work highlights the first Global Comparison of Zooplankton Time Series. ► Variation of the peak in abundance is affected by annual temperature anomalies. ► Results show no global-scale synchrony in zooplankton time-series. ► There are spatial autocorrelations over substantial distances (1000–3000 km). ► There remains considerable uncertainty about the relative causes of shifts in distributions.
Resumo:
Evidence for climate-correlated low frequency variability of various components of marine ecosystems has accumulated rapidly over the past 2 decades. There has also been a growing recognition that society needs to learn how the fluctuations of these various components are linked, and to predict the likely amplitude and steepness of future changes. Demographic characteristics of marine zooplankton make them especially suitable for examining variability of marine ecosystems at interannual to decadal time scales. Their life cycle duration is short enough that there is little carryover of population membership from year to year, but long enough that variability can be tracked with monthly-to-seasonal sampling. Because zooplankton are rarely fished, comparative analysis of changes in their abundance can greatly enhance our ability to evaluate the importance of and interaction between physical environment, food web, and fishery harvest as causal mechanisms driving ecosystem level changes. A number of valuable within-region analyses of zooplankton time series have been published in the past decade, covering a variety of modes of variability including changes in total biomass, changes in size structure and species composition, changes in spatial distribution, and changes in seasonal timing. But because most zooplankton time series are relatively short compared to the time scales of interest, the statistical power of local analyses is often low, and between-region and between-variable comparisons are also needed. In this paper, we review the results of recent within- and between-region analyses, and suggest some priorities for future work.
Resumo:
Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m−3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.
Resumo:
Hutchinson's (1957; Cold Spring Harbour Symp Quant Biol 22:415-427) niche concept is being used increasingly in the context of global change, and is currently applied to many ecological issues including climate change, exotic species invasion and management of endangered species. For both the marine and terrestrial realms, there is a growing need to assess the breadth of the niches of individual species and to make comparisons among them to forecast the species' capabilities to adapt to global change. In this paper, we describe simple non-parametric multivariate procedures derived from a method originally used in climatology to (1) evaluate the breadth of the ecological niche of a species and (2) examine whether the niches are significantly separated. We first applied the statistical procedures to a simple fictive example of 3 species separated by 2 environmental factors in order to describe the technique. We then used it to quantify and compare the ecological niche of 2 key-structural marine zooplankton copepod species, Calanus finmarchicus and C. helgolandicus, in the northern part of the North Atlantic Ocean using 3 environmental factors. The test demonstrates that the niches of both species are significantly separated and that the coldwater species has a niche larger than that of its warmer-water congeneric species.
Resumo:
Preserved and archived organic material offers huge potential for the conduct of retrospective and long-term historical ecosystem reconstructions using stable isotope analyses, but because of isotopic exchange with preservatives the obtained values require validation. The Continuous Plankton Recorder (CPR) Survey is the most extensive long-term monitoring program for plankton communities worldwide and has utilised ships of opportunity to collect samples since 1931. To keep the samples intact for subsequent analysis, they are collected and preserved in formalin; however, previous studies have found that this may alter stable carbon and nitrogen isotope ratios in zooplankton. A maximum ~0.9‰ increase of δ15N and a time dependent maximum ~1.0‰ decrease of δ13C were observed when the copepod, Calanus helgolandicus, was experimentally exposed to two formalin preservatives for 12 months. Applying specific correction factors to δ15N and δ13C values for similarly preserved Calanoid species collected by the CPR Survey within 12 months of analysis may be appropriate to enable their use in stable isotope studies. The isotope values of samples stored frozen did not differ significantly from those of controls. Although the impact of formalin preservation was relatively small in this and other studies of marine zooplankton, changes in isotope signatures are not consistent across taxa, especially for δ15N, indicating that species-specific studies may be required. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
A guide compiled as an aid to researchers in the identification of the coastal and shallow water, south-western Indian Ocean pelagic zooplankton, as much of the identification literature covering this area of amazing biodiversity is currently spread through the scientific literature and not accessible without extensive library resources. Most zooplankton groups, except fish larvae and eggs, have been covered, but some specialist groups have not yet been dealt with in great detail. However, a selection of representative members of most groups have been given, so that organisms can at least be assigned to perhaps a particular genus within the main group. The species list is based on zooplankton sampling carried out round the coastal areas of the islands of Mahé and Aldabra (Seychelles), Rodrigues (Mauritius), Madagascar and from a sampling transect between Seychelles and Rodrigues. The guide therefore includes a high proportion of the island-coastal and surface water zooplankton of the whole Indian Ocean. The location where a particular species has been sampled has been noted and some species that have not been sampled, but are known to occur in the region, have been included. Comprehensive taxonomic information has not been presented, but sufficient information should be given to identify each species. Keys have not yet been included for genera, as further species will be added. A bibliography of relevant plankton references has also been included.