58 resultados para Marine fishes
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species-based Dynamic Bioclimate Envelope Model (DBEM) with a size-based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter-specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment.
Resumo:
Notes on malformation in tub (Trigla lucerna, Bloch). Notes on hybridism in marine fishes. Motella fusca. A new British record. Notes on Monstrilla helgolandica, (Claus), at Plymouth
Resumo:
The dissolution of anthropogenically emitted excess carbon dioxide lowers the pH of the world's ocean water. The larvae of mass spawning marine fishes may be particularly vulnerable to such ocean acidification (OA), yet the generality of earlier results is unclear. Here we show the detrimental effects of OA on the development of a commercially important fish species, the Atlantic herring (Clupea harengus). Larvae were reared at three levels of CO2: today (0.0385 kPa), end of next century (0.183 kPa), and a coastal upwelling scenario (0.426 kPa), under near-natural conditions in large outdoor tanks. Exposure to elevated CO2 levels resulted in stunted growth and development, decreased condition, and severe tissue damage in many organs, with the degree of damage increasing with CO2 concentration. This complements earlier studies of OA on Atlantic cod larvae that revealed similar organ damage but at increased growth rates and no effect on condition.