5 resultados para Marginal distribution costs
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.
Resumo:
We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.
Resumo:
Antarctic krill Euphausia superba are a key component of food webs in the maritime West Antarctic Peninsula, and their life history is tied to the seasonal cycles of sea ice and primary production in the region. Previous work has shown a general in-shore migration of krill in winter in this region; however, the very near-shore has not often been sampled as part of these surveys. We investigated distribution, abundance, and size structure of krill in 3 fjordic bays along the peninsula, and in the adjacent Gerlache Strait area using vertically stratified MOCNESS net tows and ADCP acoustic biomass estimates. Krill abundance was high within bays, with net estimated densities exceeding 60 krill m-3, while acoustic estimates were an order of magnitude higher. Krill within bays were larger than krill in the Gerlache Strait. Within bays, krill aggregations were observed near the seafloor during the day with aggregations extending to the sediment interface, and exhibited diel vertical migration higher into the water column at night. We suggest these high winter krill abundances within fjords are indicative of an active seasonal migration by krill in the peninsula region. Potential drivers for such a migration include reduced advective losses and costs, and availability of sediment food resources within fjords. Seasonally near-shore krill may also affect stock and recruitment assessments and may have implications for managing the krill fishery in this area.
Resumo:
Antarctic krill Euphausia superba are a key component of food webs in the maritime West Antarctic Peninsula, and their life history is tied to the seasonal cycles of sea ice and primary production in the region. Previous work has shown a general in-shore migration of krill in winter in this region; however, the very near-shore has not often been sampled as part of these surveys. We investigated distribution, abundance, and size structure of krill in 3 fjordic bays along the peninsula, and in the adjacent Gerlache Strait area using vertically stratified MOCNESS net tows and ADCP acoustic biomass estimates. Krill abundance was high within bays, with net estimated densities exceeding 60 krill m-3, while acoustic estimates were an order of magnitude higher. Krill within bays were larger than krill in the Gerlache Strait. Within bays, krill aggregations were observed near the seafloor during the day with aggregations extending to the sediment interface, and exhibited diel vertical migration higher into the water column at night. We suggest these high winter krill abundances within fjords are indicative of an active seasonal migration by krill in the peninsula region. Potential drivers for such a migration include reduced advective losses and costs, and availability of sediment food resources within fjords. Seasonally near-shore krill may also affect stock and recruitment assessments and may have implications for managing the krill fishery in this area.