28 resultados para Margem Continental Ibérica

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climatic variability on the European Continental Shelf is dominated by events over the North Atlantic Ocean, and in particular by the North Atlantic Oscillation (NAO). The NAO is essentially a winter phenomenon, and its effects will be felt most strongly by populations for which winter conditions are critical. One example is the copepod Calanus finmarchicus, whose northern North Sea populations overwinter at depth in the North Atlantic. Its annual abundance in this region is strongly dependent on water transports at the end of the winter, and hence on the NAO index. Variations in the NAO give rise to changes in the circulation of the North Atlantic Ocean, with additional perturbations arising from El Ni (n) over tildeo - Southern Oscillation (ENSO) events in the Pacific, and these changes can be delayed by several years because of the adjustment time of the ocean circulation. One measure of the circulation is the latitude of the north wall of the Gulf Stream (GSNW index). Interannual variations in the plankton of the Shelf Seas show strong correlations with the fluctuations of the GSNW index, which are the result of Atlantic-wide atmospheric processes. These associations imply that the interannual variations are climatically induced rather than due to natural fluctuations of the marine ecosystem, and that the zooplankton populations have not been significantly affected by anthropogenic processes such as nutrient enrichment or fishing pressure. While the GSNW index represents a response to atmospheric changes over two or more years, the zooplankton populations correlated with it have generation times of a few weeks. The simplest explanation for the associations between the zooplankton and the GSNW index is that the plankton are responding to weather patterns propagating downstream from the Gulf Stream system. It seems that these meteorological processes operate in the spring. Although it has been suggested that there was a regime shift in the North Sea in the late 1980s, examination of the time-series by the cumulative sum (CUSUM) technique shows that any changes in the zooplankton of the central and northern North Sea are consistent with the background climatic variability. The abundance of total copepods increased during this period but this change does not represent a dramatic change in ecosystem processes. It is possible some change may have occurred at the end of the time-series in the years 1997 and 1998.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-latitude seas are mostly covered by multi-year ice, which impacts processes of primary production and sedimentation of organic matter. Because of the warming effect of West Spitsbergen Current (WSC), the waters off West Spitsbergen have only winter ice cover. That is uncommon for such a high latitude and enables to separate effects of multiyear-ice cover from the latitudinal patterns. Macrofauna was sampled off Kongsfjord (79°N) along the depth gradient from 300 to 3000 m. The density, biomass and diversity at shallow sites situated in a canyon were very variable. Biomass was negatively correlated with depth (R=-0.86R=-0.86, p<0.001), and ranged from 61 g ww m−2 (212 m) to 1 g ww m−2 (2025 m). The biomasses were much higher than in the multiyear-ice covered High Arctic at similar depths, while resembling those from temperate and tropical localities. Species richness (expressed by number of species per sample and species–area accumulation curves) decreased with depth. There was no clear depth-related pattern in diversity measures: Hurbert rarefaction, Shannon–Wiener or Pielou. The classic increase of species richness and diversity with depth was not observed. Species richness and diversity of deep-sea macrofauna were much lower in our study than in comparable studies of temperate North Atlantic localities. That is related to geographic isolation of Greenland–Icelandic–Norwegian (GIN) seas from the Atlantic pool of species.