10 resultados para Major ions

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Haemolymph osmoregulation by the shore crab, Carcinus maenas was confirmed over a range of salinities. 2. Na+K+-ATPase and Mg2+-ATPase activities in gill tissue increased with a decrease in salinity. 3. Na+K+-ATPase and Mg2+-ATPase activities were inhibited after exposure to p,p′-DDT. 4. K+ ion levels of the haemolymph remained unchanged, but Na+ ion levels were affected after 7 hr when transferred from 100 to 5% SW after exposure to DDT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantitative effects of Cu8+, Cd2+ and Hg2+ on the cytochemical staining reaction for lysosomal N-acetyl-/?-D-glucosaminidase have been determined and related to the inhibitory effects of the metals on colonial growth rate in the experimentally cultured hydroid Campanularia flexuosa. Cytochemical threshold concentrations are comparable to known environmental levels and are about one order of magnitude lower than those obtained by measuring colony growth rates. Pretreatment of colonies with Cuz+ gave no indication of tolerance adaptation, although there is evidence of the cumulative toxicity of Cu2+ and the possible sequestration of this metal in endodermal cell lysosomes. There is also an indication that the Cu2+ may exert its toxic effect by decreasing the stability of the lysosomal membranes, thus increasing the level of free glucosaminidase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very large pulses of particulate organic matter intermittently sink to the deep waters of the open ocean in the Northeast Atlantic. These pulses, measured by moored sediment traps since 1989, can contribute up to 60% of the organic flux to 3000 m in a particular year and are thus a major cause of the variability in carbon sequestration from the atmosphere in the region. Pulses occur in the late summer and are characterized by material that is very rich in organic carbon but with low concentrations of the biominerals opal and calcite. A number of independent lines of evidence have been examined to determine the causes of these pulses: (1) Data from the Continuous Plankton Recorder (CPR) survey show that in this region, radiolarian protozoans intermittently reach high abundances in the late summer just preceding organic pulses to depth. (2) CPR data also show that the interannual variability in radiolarian abundance since 1997 mirrors very closely the variability of deep ocean organic deposition. (3) The settling material collected in the traps displays a strong correlation between fecal pellets produced by radiolaria and the measured organic carbon flux. These all suggest that the pulses are mediated by radiolarians, a group of protozoans found throughout the world’s oceans and which are widely used by paleontologists to determine past climate conditions. Changes in the upper ocean community structure (between years and on longer timescales) may have profound effects on the ability of the oceans to sequester carbon dioxide from the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antarctic krill (Euphausia superba) were sampled in contrasting habitats: a seasonally ice-covered deep ocean (Lazarev Sea), ice-free shelves at their northern range (South Georgia) and the Antarctic Peninsula (Bransfield Strait), and shelf and oceanic sites in the Scotia Sea. Across 92 stations, representing a year-round average, the food volume in krill stomachs comprised 71 +/- 29% algae, 17 +/- 21% protozoans, and 12 +/- 25% metazoans. Fatty acid trophic markers showed that copepods were consistently part of krill diet, not a switch food. In open waters, both diatom and copepod consumption increased with phytoplankton abundance. Under sea ice, ingestion of diatoms became rare, whereas feeding on copepods remained constant. During winter, larvae contained high but variable proportions of diatom markers, whereas in postlarvae the role of copepods increased with krill body length. Overwintering differed according to habitat. Krill from South Georgia had lower lipid stores than those from the Bransfield Strait or Lazarev Sea. Feeding effort was much reduced in Lazarev Sea krill, whereas most individuals from the Bransfield Strait and South Georgia contained phytoplankton and seabed detritus in their stomachs. Their retention of essential body reserves indicates that krill experienced most winter hardship in the Lazarev Sea, followed by South Georgia and then Bransfield Strait. This was reflected in the delayed development from juveniles to adults in the Lazarev Sea. Circumpolar comparisons of length frequencies suggest that krill growth conditions are more favorable in the southwest Atlantic than in the Lazarev Sea or off East Antarctica because of longer phytoplankton bloom periods and rewarding access to benthic food.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A coupled hydrodynamic-biogeochemical model was implemented in order to estimate the effects of Major Baltic Inflows on the near-bottom hydrophysical and biogeochemical conditions in the northern Baltic Proper and the western Gulf of Finland during the period 1991�2009. We compared results of a realistic reference run to the results of an experimental run where Major Baltic Inflows were suppressed. Further to the expected overall decrease in bottom salinity, this modelling experiment confirms that in the absence of strong saltwater inflows the deep areas of the Baltic Proper would become more anoxic, while in the shallower areas (western Gulf of Finland) near-bottom average conditions improve. Our experiment revealed that typical estuarine circulation results in the sporadic emergence of short-lasting events of near-bottom anoxia in the western Gulf of Finland due to transport of water masses from the Baltic Proper. Extrapolating our results beyond the modelled period, we speculate that the further deepening of the halocline in the Baltic Proper is likely to prevent inflows of anoxic water to the Gulf of Finland and in the longer term would lead to improvement in near-bottom conditions in the Baltic Proper. Our results reaffirm the importance of accurate representation of salinity dynamics in coupled Baltic Sea models serving as a basis for credible hindcast and future projection simulations of biogeochemical conditions.