10 resultados para Madden Julian Oscillation
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Climatic oscillations as reflected in atmospheric modes such as the North Atlantic Oscillation (NAO) may be seen as a proxy for regulating forces in aquatic and terrestrial ecosystems. Our review highlights the variety of climate processes related to the NAO and the diversity in the type of ecological responses that different biological groups can display. Available evidence suggests that the NAO influences ecological dynamics in both marine and terrestrial systems, and its effects may be seen in variation at the individual, population and community levels. The ecological responses to the NAO encompass changes in timing of reproduction, population dynamics, abundance, spatial distribution and interspecific relationships such as competition and predator-prey relationships. This indicates that local responses to large-scale changes may be more subtle than previously suggested. We propose that the NAO effects may be classified as three types: direct, indirect and integrated. Such a classification will help the design and interpretation of analyses attempting to relate ecological changes to the NAO and, possibly, to climate in general.
Resumo:
Inter-annual variability in the timing of phytoplankton spring bloom and phytoplankton community structure in the central North Atlantic Ocean was quantified using ocean color data and continuous plankton recorder (CPR) data. This variability was related to the North Atlantic Oscillation using correlation analysis and multivariate auto-regression models. The initiation of the spring bloom derived from CPR phytoplankton color index data is similar to that derived from satellite chlorophyll, and exhibits a nominal correlation with the sea surface temperature (SST) and the North Atlantic Oscillation (NAO). The extrapolated spring bloom timing suggested later initiation of blooms in the mid-1980s and earlier initiation of blooms in the 1990s. The climatological phytoplankton community structure in the central North Atlantic is dominated by diatoms, except for a shift in community composition favoring dinoflagellates in August. The ratio of diatoms to total phytoplankton abundance and the ratio of dinoflagellates to total phytoplankton abundance are both closely correlated with the NAO and SST. The extended time series of phytoplankton community structure between 1985 and 2009, deduced from the time series of SST and NAO over the same interval, showed a decadal shift away from diatoms towards dinoflagellates. The linkages between the NAO, and changes in stratification and phytoplankton processes occur over a larger scale than previously observed.
Resumo:
Phytoplankton phenology and community structure in the western North Pacific were investigated for 2001–2009, based on satellite ocean colour data and the Continuous Plankton Recorder survey. We estimated the timing of the spring bloom based on the cumulative sum satellite chlorophyll adata, and found that the Pacific Decadal Oscillation (PDO)-related interannual SST anomaly in spring significantly affected phytoplankton phenology. The bloom occurred either later or earlier in years of positive or negative PDO (indicating cold and warm conditions, respectively). Phytoplankton composition in the early summer varied depending on the magnitude of seasonal SST increases, rather than the SST value itself. Interannual variations in diatom abundance and the relative abundance of non-diatoms were positively correlated with SST increases for March–April and May–July, respectively, suggesting that mixed layer environmental factors, such as light availability and nutrient stoichiometry, determine shifts in phytoplankton community structure. Our study emphasised the importance of the interannual variation in climate-induced warm–cool cycles as one of the key mechanisms linking climatic forcing and lower trophic level ecosystems.
Resumo:
Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO). Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (~60 years) is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts) over multidecadal scales and influences the fortunes of various fisheries over many centuries.
Resumo:
The relationship between climate, represented by the North Atlantic Oscillation (NAO), and the calanoid copepod Calanus finmarchicus has been extensively studied. The correlation between NAO and C. finmarchicus has broken down (post-1995). In the present study, we revisit the relationship between C. finmarchicus and the NAO. Our reanalysis shows that previous treatment of this data did not take into account 2 aspects of both the C. finmarchicus and NAO index time-series: (1) the presence of significant trends and (2) significant autocorrelation. Our analysis suggests that previously reported relationships between NAO and C. finmarchicus abundance can be explained largely by the trends in both data series. Removing the trend from both time-series resulted in a decrease in the amount of C. finmarchicus abundance variability explained by the NAO. Trend removal eliminated the autocorrelation from the NAO time-series, but not from the C. finmarchicus time-series. Partial autocorrelation analysis showed that the autocorrelation present in the C. finmarchicus time-series is only found at a lag of 1 yr, suggesting strong, year-to-year connectivity in this population. We included the lagged C. finmarchicus abundance into a regression with the NAO and found that C. finmarchicus variability is explained by the previous year’s abundance and, to a much smaller extent, by NAO variability. Limiting the time-series to the most recent 22 yr period (1981 to 2002) showed that the NAO is no longer correlated to C. finmarchicus abundance, and the autocorrelation in the C. finmarchicus abundance series also appears to be weakening.
Resumo:
The North Atlantic Oscillation (NAO) is a major mode of variability in the North Atlantic, dominating atmospheric and oceanic conditions. Here, we examine the phytoplankton community-structure response to the NAO using the Continuous Plankton Recorder data set. In the Northeast Atlantic, in the transition region between the gyres, variability in the relative influence of subpolar or subtropical-like conditions is reflected in the physical environment. During positive NAO periods, the region experiences subpolar-like conditions, with strong wind stress and deep mixed layers. In contrast, during negative NAO periods, the region shifts toward more subtropical-like conditions. Diatoms dominate the phytoplankton community in positive NAO periods, whereas in negative NAO periods, dinoflagellates outcompete diatoms. The implications for interannual variability in deep ocean carbon flux are examined using data from the Porcupine Abyssal Plain time-series station. Contrary to expectations, carbon flux to 3000 m is enhanced when diatoms are outcompeted by other phytoplankton functional types. Additionally, highest carbon fluxes were not associated with an increase in biomineral content, which implies that ballasting is not playing a dominant role in controlling the flux of material to the deep ocean in this region. In transition zones between gyre systems, phytoplankton populations can change in response to forcing induced by opposing NAO phases.