11 resultados para Low concentrations
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Results from depth integrated and vertically stratified plankton sampling in the northwestern Adriatic Sea were used for comparison of gut contents of larvae of European anchovy Engraulis encrasicolus with composition and concentration of potential prey in the plankton. Sampling was carried out over a grid of stations both before and after a period of increased wind mixing to investigate changes in food availability and larval feeding success. All larvae had empty guts soon after dusk, indicating daytime feeding and rapid gut clearance. With increasing larval length there was a greater percentage of specimens with empty guts, despite suitable food being available in the plankton for these larger larvae; this suggests differential gut evacuation during sampling-possibly related to the degree of gut development. Larval diet was principally the various developmental stages of copepods, especially calanoid and cyclopoid nauplii, which were preferentially selected by larvae, whereas selection was against harpacticoid nauplii. Lamellibranch larvae and Peridinium were generally abundant in the plankton, but were only present in the gut contents in any number when the preferred dietary organisms were present in the plankton at low concentrations. The number of food organisms in the gut contents increased with concentration of the preferred food organisms in the plankton up to a limit of similar to 50 organisms/l. Within the upper 18 m of the water column, there was a reduction in the proportion of larvae with food in their guts with increasing depth, irrespective of the vertical profile of food concentration. Following a period of wind mixing the composition of the plankton changed. This was reflected in the diet of anchovy larvae, which altered in parallel. There was also an overall 41% decrease in concentration of the preferred food particles of larvae in the plankton following the period of wind mixing, but larvae were still able to maintain their food intake. These results show that anchovy larvae can successfully adapt their diet to a changing prey field and suggest that in the conditions observed in the northern Adriatic, quite radical changes in the feeding environment were probably insufficient to affect overall larval mortality.
Resumo:
Individuals of Mytilus edulis L., collected from the Erme estuary (S.W. England) in 1978, were exposed to low concentrations (7 to 68 μg l-1) of the water-accommodated fraction (WAF) of North Sea crude oil. The pattern of accumulation of petroleum hydrocarbons in the body tissues was affected by the presence of algal food cells, the period of exposure, the hydrocarbon concentration in seawater, the type of body tissue and the nature of the hydrocarbon. Many physiological responses (e.g. rates of oxygen consumption, feeding, excretion, and scope for growth), cellular responses (e.g. lysosomal latency and digestive cell size) and biochemical responses (e.g. specific activities of several enzymes) were significantly altered by short-term (4 wk) and/or long-term (5 mo) exposure to WAF. Stress indices such as scope for growth and lysosomal latency were negatively correlated with tissue aromatic hydrocarbons.
Resumo:
Components of a xenobiotic detoxication/toxication system involving mixed function oxygenases are present inMytilus edulis. Our paper critically reviews the recent literature on this topic which reported the apparent absence of such a system in bivalve molluscs and attempts to reconcile this viewpoint with our own findings on NADPH neotetrazolium reductase, glucose-6-phosphate dehydrogenase, aldrin epoxidation and other reports of the presence of mixed function oxygenases. New experimental data are presented which indicate that some elements of the detoxication/toxication system inM. edulis can be induced by aromatic hydrocarbons derived from crude oil. This includes a brief review of the results of long-term experiments in which mussels were exposed to low concentrations of the water accommodated fraction of North Sea crude oil (7.7–68 µg 1−1) in which general stress responses such as reduced physiological scope for growth, cytotoxic damage to lysosomal integrity and cellular damage are considered as characteristics of the general stress syndrome induced by the toxic action of the xenobiotics. In addition, induction in the blood cells of microsomal NADPH neotetrazolium reductase (associated with mixed function oxygenases) and the NADPH generating enzyme glucose-6-phosphate dehydrogenase are considered to be specific biological responses to the presence of aromatic hydrocarbons. The consequences of this detoxication/toxication system forMytilus edulis are discussed in terms of the formation of toxic electrophilic intermediate metabolites which are highly reactive and can combine with DNA, RNA and proteins with subsequent damage to these cellular constituents. Implications for neoplasms associated with the blood cells are also discussed. Finally, in view of the increased use of mussel species in pollutant monitoring programmes, the induction phenomenon which is associated with microsomal enzymes in the blood cells is considered as a possible tool for the detection of the biological effects of environmental contamination by low concentrations of certain groups of organic xenobiotics.
Resumo:
Results from plankton sampling in the northern North Sea with the Continuous Plankton Recorder (CPR) and the Undulating Oceanographic Recorder (UOR) during the Fladen Ground Experiment in 1976 (FLEX 76) are summarised. The first evidence of the spring outbreak of phytoplankton was on 19 April, the day after the first signs of vertical stability of the water column were observed. This was followed by spawning of the euphausiid Thysanoessa inermis and rapid increase in the numbers of Calanus finmarchicus. C. finmarchicus was the most abundant species over the FLEX period (19 March to 3 June) and, together with T. inermis, accounted for over 80% of the dry weight of the zooplankton standing stock. By early June the standing crop of phytoplankton had been depleted and nutrients levels were reduced to very low concentrations in the upper 50 m.
Resumo:
The composition and distribution of phytoplankton assemblages around the tip of the Antarctic Peninsula were studied during two summer cruises (February/March 2008 and 2009). Water samples were collected for HPLC/CHEMTAX pigment and microscopic analysis. A great spatial variability in chlorophyll a (Chl a) was observed in the study area: highest levels in the vicinity of the James Ross Island (exceeding 7 mg m−3 in 2009), intermediate values (0.5 to 2 mg m−3) in the Bransfield Strait, and low concentrations in the Weddell Sea and Drake Passage (below 0.5 mg m−3). Phytoplankton assemblages were generally dominated by diatoms, especially at coastal stations with high Chl a concentration, where diatom contribution was above 90% of total Chl a. Nanoflagellates, such as cryptophytes and/or Phaeocystis antarctica, replaced diatoms in open-ocean areas (e.g., Weddell Sea). Many species of peridinin-lacking autotrophic dinoflagellates (e.g., Gymnodinium spp.) were also important to total Chl a biomass at well-stratified stations of Bransfield Strait. Generally, water column structure was the most important environmental factor determining phytoplankton communities’ biomass and distribution. The HPLC pigment data also allowed the assessment of different physiological responses of phytoplankton to ambient light variation. The present study provides new insights about the dynamics of phytoplankton in an undersampled region of the Southern Ocean highly susceptible to global climate change.
Resumo:
Very large pulses of particulate organic matter intermittently sink to the deep waters of the open ocean in the Northeast Atlantic. These pulses, measured by moored sediment traps since 1989, can contribute up to 60% of the organic flux to 3000 m in a particular year and are thus a major cause of the variability in carbon sequestration from the atmosphere in the region. Pulses occur in the late summer and are characterized by material that is very rich in organic carbon but with low concentrations of the biominerals opal and calcite. A number of independent lines of evidence have been examined to determine the causes of these pulses: (1) Data from the Continuous Plankton Recorder (CPR) survey show that in this region, radiolarian protozoans intermittently reach high abundances in the late summer just preceding organic pulses to depth. (2) CPR data also show that the interannual variability in radiolarian abundance since 1997 mirrors very closely the variability of deep ocean organic deposition. (3) The settling material collected in the traps displays a strong correlation between fecal pellets produced by radiolaria and the measured organic carbon flux. These all suggest that the pulses are mediated by radiolarians, a group of protozoans found throughout the world’s oceans and which are widely used by paleontologists to determine past climate conditions. Changes in the upper ocean community structure (between years and on longer timescales) may have profound effects on the ability of the oceans to sequester carbon dioxide from the atmosphere.
Resumo:
The seeding of an expanse of surface waters in the equatorial Pacific Ocean with low concentrations of dissolved iron triggered a massive phytoplankton bloom which consumed large quantities of carbon dioxide and nitrate that these microscopic plants cannot fully utilize under natural conditions. These and other observations provide unequivocal support for the hypothesis that phytoplankton growth in this oceanic region is limited by iron bioavailability.
Resumo:
Current knowledge about the spread of pathogens in aquatic environments is scarce probably because bacteria, viruses, algae and their toxins tend to occur at low concentrations in water, making them very difficult to measure directly. The purpose of this study was the development and validation of tools to detect pathogens in freshwater systems close to an urban area. In order to evaluate anthropogenic impacts on water microbiological quality, a phylogenetic microarray was developed in the context of the EU project µAQUA to detect simultaneously numerous pathogens and applied to samples from two different locations close to an urban area located upstream and downstream of Rome in the Tiber River. Furthermore, human enteric viruses were also detected. Fifty liters of water were collected and concentrated using a hollow-fiber ultrafiltration approach. The resultant concentrate was further size-fractionated through a series of decreasing pore size filters. RNA was extracted from pooled filters and hybridized to the newly designed microarray to detect pathogenic bacteria, protozoa and toxic cyanobacteria. Diatoms as indicators of the water quality status, were also included in the microarray to evaluate water quality. The microarray results gave positive signals for bacteria, diatoms, cyanobacteria and protozoa. Cross validation of the microarray was performed using standard microbiological methods for the bacteria. The presence of oral-fecal transmitted human enteric-viruses were detected using q-PCR. Significant concentrations of Salmonella, Clostridium, Campylobacter and Staphylococcus as well as Hepatitis E Virus (HEV), noroviruses GI (NoGGI) and GII (NoGII) and human adenovirus 41 (ADV 41) were found in the Mezzocammino site, whereas lower concentrations of other bacteria and only the ADV41 virus was recovered at the Castel Giubileo site. This study revealed that the pollution level in the Tiber River was considerably higher downstream rather than upstream of Rome and the downstream location was contaminated by emerging and re-emerging pathogens.
Resumo:
To evaluate the performance of ocean-colour retrievals of total chlorophyll-a concentration requires direct comparison with concomitant and co-located in situ data. For global comparisons, these in situ match-ups should be ideally representative of the distribution of total chlorophyll-a concentration in the global ocean. The oligotrophic gyres constitute the majority of oceanic water, yet are under-sampled due to their inaccessibility and under-represented in global in situ databases. The Atlantic Meridional Transect (AMT) is one of only a few programmes that consistently sample oligotrophic waters. In this paper, we used a spectrophotometer on two AMT cruises (AMT19 and AMT22) to continuously measure absorption by particles in the water of the ship's flow-through system. From these optical data continuous total chlorophyll-a concentrations were estimated with high precision and accuracy along each cruise and used to evaluate the performance of ocean-colour algorithms. We conducted the evaluation using level 3 binned ocean-colour products, and used the high spatial and temporal resolution of the underway system to maximise the number of match-ups on each cruise. Statistical comparisons show a significant improvement in the performance of satellite chlorophyll algorithms over previous studies, with root mean square errors on average less than half (~ 0.16 in log10 space) that reported previously using global datasets (~ 0.34 in log10 space). This improved performance is likely due to the use of continuous absorption-based chlorophyll estimates, that are highly accurate, sample spatial scales more comparable with satellite pixels, and minimise human errors. Previous comparisons might have reported higher errors due to regional biases in datasets and methodological inconsistencies between investigators. Furthermore, our comparison showed an underestimate in satellite chlorophyll at low concentrations in 2012 (AMT22), likely due to a small bias in satellite remote-sensing reflectance data. Our results highlight the benefits of using underway spectrophotometric systems for evaluating satellite ocean-colour data and underline the importance of maintaining in situ observatories that sample the oligotrophic gyres.
Resumo:
To evaluate the performance of ocean-colour retrievals of total chlorophyll-a concentration requires direct comparison with concomitant and co-located in situ data. For global comparisons, these in situ match-ups should be ideally representative of the distribution of total chlorophyll-a concentration in the global ocean. The oligotrophic gyres constitute the majority of oceanic water, yet are under-sampled due to their inaccessibility and under-represented in global in situ databases. The Atlantic Meridional Transect (AMT) is one of only a few programmes that consistently sample oligotrophic waters. In this paper, we used a spectrophotometer on two AMT cruises (AMT19 and AMT22) to continuously measure absorption by particles in the water of the ship's flow-through system. From these optical data continuous total chlorophyll-a concentrations were estimated with high precision and accuracy along each cruise and used to evaluate the performance of ocean-colour algorithms. We conducted the evaluation using level 3 binned ocean-colour products, and used the high spatial and temporal resolution of the underway system to maximise the number of match-ups on each cruise. Statistical comparisons show a significant improvement in the performance of satellite chlorophyll algorithms over previous studies, with root mean square errors on average less than half (~ 0.16 in log10 space) that reported previously using global datasets (~ 0.34 in log10 space). This improved performance is likely due to the use of continuous absorption-based chlorophyll estimates, that are highly accurate, sample spatial scales more comparable with satellite pixels, and minimise human errors. Previous comparisons might have reported higher errors due to regional biases in datasets and methodological inconsistencies between investigators. Furthermore, our comparison showed an underestimate in satellite chlorophyll at low concentrations in 2012 (AMT22), likely due to a small bias in satellite remote-sensing reflectance data. Our results highlight the benefits of using underway spectrophotometric systems for evaluating satellite ocean-colour data and underline the importance of maintaining in situ observatories that sample the oligotrophic gyres.