5 resultados para Longwall shields

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geochemical evidence invokes anoxic deep oceans until the terminal Neoproterozoic similar to 0.55 Ma, despite oxygenation of Earth's atmosphere nearly 2 Gyr earlier. Marine sediments from the intervening period suggest predominantly ferruginous (anoxic Fe(II)-rich) waters, interspersed with euxinia (anoxic H2S-rich conditions) along productive continental margins. Today, sustained biotic H2S production requires NO3- depletion because denitrifiers outcompete sulphate reducers. Thus, euxinia is rare, only occurring concurrently with (steady state) organic carbon availability when N-2-fixers dominate the production in the photic zone. Here we use a simple box model of a generic Proterozoic coastal upwelling zone to show how these feedbacks caused the mid-Proterozoic ocean to exhibit a spatial/temporal separation between two states: photic zone NO3- with denitrification in lower anoxic waters, and N-2-fixation- driven production overlying euxinia. Interchange between these states likely explains the varying H2S concentration implied by existing data, which persisted until the Neoproterozoic oxygenation event gave rise to modern marine biogeochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. 430 plankton samples, which were taken by several herring drifters using the Continuous Plankton Recorder in the Shields fishing area during the summer seasons of 1931 to 1933, are analysed to show the main changes in the plankton during those seasons. 2. A comparison is made between the proportions of the different zooplankton organisms found in the plankton and the proportions of these recorded by Savage (1937) in the stomachs of herring obtained from drifters working in the same area and during the same time. The comparisons are made for 29 ten-day periods in the seasons 1931 to 1933, and in addition, for 6 ten-day periods relating to a single drifter which obtained both plankton and stomach samples at the same time in 1932. 3. The comparisons in 2 provide evidence that the herring feeds by selecting certain organisms by individual acts of capture and not by swimming open-mouthed to strain out the plankton indiscriminately: (a) Calanus and Temora in the stomachs either correspond fairly closely to the proportions in the plankton or they may be in very much higher proportions. The latter is always true regarding Anomalocera. (b) Acartia, Oithona, Cladocera and Lamellibranch larvae are always in larger proportions in the plankton than in the stomachs; this applies also to Centropages with two insignificant exceptions. (c) There is a close correspondence between the numbers of Limacina and Sagitta in the plankton and stomachs in the latter half of the 1931 season, but not during 1932 and 1933, when the numbers in the stomachs were insignificant ; during the former period there was a great scarcity of Calanus in the plankton.