12 resultados para Local taxes
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Local-scale planning decisions are required by the existing Environmental Impact Assessment process to take account of the implications of a development on a range of environmental and social factors, and could therefore be supported by an ecosystem services approach. However, empirical assessments at a local scale within the marine environment have focused on only a single or limited set of services. This paper tests the applicability of the ecosystem services approach to environmental impact appraisal by considering how the identification and quantification of a comprehensive suite of benefits provided at a local scale might proceed in practice. A methodology for conducting an Environmental Benefits Assessment (EBA) is proposed, the underlying framework for which follows the recent literature by placing the emphasis on ecosystem benefits, as opposed to services. The EBA methodology also proposes metrics that can be quantified at local scale, and is tested using a case study of a hypothetical tidal barrage development in the Taw Torridge estuary in North Devon, UK. By suggesting some practical steps for assessing environmental benefits, this study aims to stimulate discussion and so advance the development of methods for implementing ecosystem service approaches at a local scale.
Resumo:
An extensive literature base worldwide demonstrates how spatial differences in estuarine fish assemblages are related to those in the environment at (bio)regional, estuary-wide or local (within-estuary) scales. Few studies, however, have examined all three scales, and those including more than one have often focused at the level of individual environmental variables rather than scales as a whole. This study has identified those spatial scales of environmental differences, across regional, estuary-wide and local levels, that are most important in structuring ichthyofaunal composition throughout south-western Australian estuaries. It is the first to adopt this approach for temperate microtidal waters. To achieve this, we have employed a novel approach to the BIOENV routine in PRIMER v6 and a modified global BEST test in an alpha version of PRIMER v7. A combination of all three scales best matched the pattern of ichthyofaunal differences across the study area (rho = 0.59; P = 0.001), with estuary-wide and regional scales accounting for about twice the variability of local scales. A shade plot analysis showed these broader-scale ichthyofaunal differences were driven by a greater diversity of marine and estuarine species in the permanently-open west coast estuaries and higher numbers of several small estuarine species in the periodically-open south coast estuaries. When interaction effects were explored, strong but contrasting influences of local environmental scales were revealed within each region and estuary type. A quantitative decision tree for predicting the fish fauna at any nearshore estuarine site in south-western Australia has also been produced. The estuarine management implications of the above findings are highlighted.
What are the local impacts of energy systems on marine ecosystem services: a systematic map protocol
Resumo:
Background: Increasing concentrations of atmospheric greenhouse gases (GHG) and its impact on the climate has resulted in many international governments committing to reduce their GHG emissions. The UK, for example, has committed to reducing its carbon emissions by 80% by 2050. Suggested ways of reaching such a target are to increase dependency on offshore wind, offshore gas and nuclear. It is not clear, however, how the construction, operation and decommissioning of these energy systems will impact marine ecosystem services, i.e. the services obtained by people from the natural environment such as food provisioning, climate regulation and cultural inspiration. Research on ecosystem service impacts associated with offshore energy technologies is still in its infancy. The objective of this review is to bolster the evidence base by firstly, recording and describing the impacts of energy technologies at the marine ecosystems and human level in a consistent and transparent way; secondly, to translate these ecosystem and human impacts into ecosystem service impacts by using a framework to ensure consistency and comparability. The output of this process will be an objective synthesis of ecosystem service impacts comprehensive enough to cover different types of energy under the same analysis and to assist in informing how the provision of ecosystem services will change under different energy provisioning scenarios. Methods: Relevant studies will be sourced using publication databases and selected using a set of selection criteria including the identification of: (i) relevant subject populations such as marine and coastal species, marine habitat types and the general public; (ii) relevant exposure types including offshore wind farms, offshore oil and gas platforms and offshore structures connected with nuclear; (iii) relevant outcomes including changes in species structure and diversity; changes in benthic, demersal and pelagic habitats; and changes in cultural services. The impacts will be synthesised and described using a systematic map. To translate these findings into ecosystem service impacts, the Common International Classification of Ecosystem Services (CICES) and Millennium Ecosystem Assessment (MEA) frameworks are used and a detailed description of the steps taken provided to ensure transparency and replicability.
Resumo:
This paper explores the social dimensions of an experimental release of carbon dioxide (CO2) carried out in Ardmucknish Bay, Argyll, United Kingdom. The experiment, which aimed to understand detectability and potential effects on the marine environment should there be any leakage from a CO2 storage site, provided a rare opportunity to study the social aspects of a carbon dioxide capture and storage-related event taking place in a lived-in environment. Qualitative research was carried out in the form of observation at public information events about the release, in-depth interviews with key project staff and local stakeholders/community members, and a review of online media coverage of the experiment. Focusing mainly on the observation and interview data, we discuss three key findings: the role of experience and analogues in learning about unfamiliar concepts like CO2 storage; the challenge of addressing questions of uncertainty in public engagement; and the issue of when to commence engagement and how to frame the discussion. We conclude that whilst there are clearly slippages between a small-scale experiment and full-scale CCS, the social research carried out for this project demonstrates that issues of public and stakeholder perception are as relevant for offshore CO2 storage as they are for onshore.