3 resultados para Light gauge cold-formed steel

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Light (20-450 μmol photons m-2 s-1), temperature (3-11°C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (~0.8 d-1) was observed at high temperture and light; at 3°C the growth rate was ~30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (~50) and N:P ratios (~8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3°C compared with 17-33 at 11°C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (α*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (Pm) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased to <1 under nutrient and light limitation, probably due to photorespiration. The results clearly demonstrate that there are interaction effects between light, temperature and nutrient limitation, and the data suggests greater variability of key parameters at low temperature. Understanding these dynamics will be important for improving models of aquatic primary production and biogeochemical cycles in a warming climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes a new genus Dystomanema gen. nov. with two new species, D. cadizensis sp. nov. and D. brandtae sp. nov. within the family Ethmolaimidae, subfamily Neotonchinae, based on specimens from two low-activity cold-seep environments at distant geographical locations. The new genus was first identified in samples from the Darwin mud volcano (1100 m depth) in the Gulf of Cadiz and later on also found in samples from a low-activity seep in the Larsen B embayment (820m depth) off the eastern Antarctic Peninsula. Until now, the family Ethmolaimidae contained nine genera: Ethmolaimus and Paraethmolaimus in the subfamily Ethmolaiminae, and Comesa, Filitonchoides, Filitonchus, Gomphionchus, Gomphionema, Nannolaimus, and Neothonchus in the subfamily Neotonchinae. The most important family characteristics are: an annulated cuticle bearing transverse rows of dots, cephalic sensilla arrangement of 6+6+4, a spiral amphid, an oesophagus with muscular posterior bulb, paired gonads and males with cup-shaped precloacal supplements. The new genus resembles Comesa and Neotonchus, but is typified by a ventrally displaced oral opening with three very small teeth that are easily overlooked. D. cadizensis gen. nov. sp. nov. is characterized by the 1401-2123 mu m long body; cuticle transversally striated with fine punctation; head conical; low lips; amphid spiralled 3 turns, oral opening ventrally displaced, male with outstretched testes; spicules of equal size; gubernaculum plate-like and ten to twelve conspicuous cup-shaped precloacal supplements with external longitudinal articulated flange. D. brandtae gen. nov. sp. nov. can be distinguished by the 2438-3280 mu m long body; cuticle transversally striated with fine punctuation; head conical; low lips; amphid spiraled 3+ turns; oral opening ventrally displaced; male with anterior testes outstretched and posterior one smaller and reflexed; spicules of equal size; gubernaculum plate-like and twenty conspicuous cup-shaped precloacal supplements with external longitudinal articulated flange. Notes on the ecology and habitat of the new genus are provided in light of its discovery in cold-seep environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.