5 resultados para LEAD 310
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
A historical record for the deposition of lead in Swansea Bay, Bristol Channel, U.K. has been determined together with isotopic compositions. Analysis of the isotopic composition of lead in cores, dated by 210Pb-210Po chronology, illustrated a post ~ 1850 influx of lead originating from technically produced materials. Since ~ 1850 there has been a × 3 increase of lead in sediments of which only 25–30% can be accounted for from technical sources; the remainder is presumed to be derived from working of the South Wales Coal Measures.
Resumo:
We carried out 16 photochemical experiments of filtered surface water in a custom-built solar simulator and concomitant measurements of in vitro gross primary production (GPP) and respiration (R) in the Mauritanian upwelling during a Lagrangian study following three sulfur hexafluoride–labeled patches of upwelled water (P1 to P3). Oxygen photolysis rates were correlated with the absorbance of chromophoric dissolved organic matter (CDOM) at 300 nm, suggesting first-order kinetics with respect to CDOM. An exponential fit was used to calculate the apparent quantum yield (AQY) for oxygen photolysis, giving an average AQY of 0.00053 µmol O2 (mole photons m−2 s−1)−1 at 280 nm and slope of 0.0012 nm−1. Modeled photochemical oxygen demand (POD) at the surface (3–16 mmol m−3 d−1) occasionally exceeded R and was dominated by ultraviolet radiation (71–79%). Euphotic-layer integrated GPP decreased with time during both P-1 and P-3, whereas R remained relatively constant and POD increased during P-1 and decreased during P-3. On Day 4 of P-3, GPP and POD maxima coincided with high CDOM absorbance, suggesting “new” CDOM production. Omitting POD may lead to an underestimation of net community production (NCP), both through in vitro and geochemical methods (here by 2–22%). We propose that oxygen-based NCP estimates should be revised upward. For the Mauritanian upwelling, the POD-corrected NCP was strongly correlated with standard NCP with a slope of 1.0066 ± 0.0244 and intercept of 46.51 ± 13.15 mmol m−2 d−1.
Resumo:
The origin of neurons was a key event in evolution, allowing metazoans to evolve rapid behavioral responses to environmental cues. Reconstructing the origin of synaptic proteins promises to reveal their ancestral functions and might shed light on the evolution of the first neuron-like cells in metazoans. By analyzing the genomes of diverse metazoans and their closest relatives, the evolutionary history of diverse presynaptic and postsynaptic proteins has been reconstructed. These analyses revealed that choanoflagellates, the closest relatives of metazoans, possess diverse synaptic protein homologs. Recent studies have now begun to investigate their ancestral functions. A primordial neurosecretory apparatus in choanoflagellates was identified and it was found that the mechanism, by which presynaptic proteins required for secretion of neurotransmitters interact, is conserved in choanoflagellates and metazoans. Moreover, studies on the postsynaptic protein homolog Homer revealed unexpected localization patterns in choanoflagellates and new binding partners, both which are conserved in metazoans. These findings demonstrate that the study of choanoflagellates can uncover ancient and previously undescribed functions of synaptic proteins.