5 resultados para LARGE-AREA

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The seas around Scotland are rich and diverse – Scotland’s position at the edge of the continental shelf, the long coastline, large area of sea and the mixing of warm and coldwater currents combine to make its waters a special place for marine wildlife and habitats. Scotland has over 18,000 km of coastline and its inshore and offshore areas are among the largest of any EU country, representing 13% of all European seas. Scotland’s seas are of outstanding scenic, historical and cultural value and are part of the national identity at home and abroad. The Marine (Scotland) Act 2010 and the UK Marine and Coastal Access Act 2009 include new powers and duties to ensure that our seas are managed sustainably for future generations, integrating the economic growth of marine industries with the need to protect these assets. Measures to conserve Scotland’s marine natural heritage are based on a three pillar approach, with action at the wider seas level (e.g. marine planning or sectoral controls); specific species conservation measures (e.g. improved protection for seals); and through site protection measures - the identification of new Marine Protected Areas (MPAs). To help target action under each of the three pillars, Scottish Natural Heritage (SNH) and the Joint Nature Conservation Committee (JNCC) have generated a focused list of habitats and species of priority conservation importance - the Priority Marine Features (PMFs). The aim of the current study was to produce a descriptive catalogue of the Scottish PMFs (including component habitats and species where appropriate) to serve as a reference for future nature conservation action. Whilst derived from available existing accounts, the succinct 1-page descriptions are written from a Scottish perspective, refining, but clearly linking to more generic UK, EC or OSPAR (Oslo and Paris Commission) commentary. Available information on the geographic distribution of the features was collated as part of the project and a summary map is provided in each description. Main findings  This project has generated a descriptive catalogue of the 81 PMFs that have been identified in the seas around Scotland (out to the limit of the UK continental shelf). The list comprises 26 broad habitats (e.g. burrowed mud), seven low or limited mobility species (e.g. ocean quahog) and 48 mobile species, including fish (e.g. blue ling) and marine mammals (e.g. minke whale).  Information on the distribution of the PMFs was collated within a Geographic Information System (GIS). This is the first time that data about such a diverse range of Scottish marine nature conservation interests have been compiled within a single repository. These data have and will be used in conjunction with other contextual base-mapping to inform the development of nature conservation advice and commentary (e.g. in the production of the Scotland’s Marine Atlas - Baxter et al., 2011).  The feature distribution mapping used in the production of this report is being made available to view online via the National Marine Plan Interactive web portal (NMPi - http://www.gov.scot/Topics/marine/seamanagement/nmpihome). As new or refined data on Scottish PMFs become available, these will be fed into updates to the project geodatabase and NMPi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The seas around Scotland are rich and diverse – Scotland’s position at the edge of the continental shelf, the long coastline, large area of sea and the mixing of warm and coldwater currents combine to make its waters a special place for marine wildlife and habitats. Scotland has over 18,000 km of coastline and its inshore and offshore areas are among the largest of any EU country, representing 13% of all European seas. Scotland’s seas are of outstanding scenic, historical and cultural value and are part of the national identity at home and abroad. The Marine (Scotland) Act 2010 and the UK Marine and Coastal Access Act 2009 include new powers and duties to ensure that our seas are managed sustainably for future generations, integrating the economic growth of marine industries with the need to protect these assets. Measures to conserve Scotland’s marine natural heritage are based on a three pillar approach, with action at the wider seas level (e.g. marine planning or sectoral controls); specific species conservation measures (e.g. improved protection for seals); and through site protection measures - the identification of new Marine Protected Areas (MPAs). To help target action under each of the three pillars, Scottish Natural Heritage (SNH) and the Joint Nature Conservation Committee (JNCC) have generated a focused list of habitats and species of priority conservation importance - the Priority Marine Features (PMFs). The aim of the current study was to produce a descriptive catalogue of the Scottish PMFs (including component habitats and species where appropriate) to serve as a reference for future nature conservation action. Whilst derived from available existing accounts, the succinct 1-page descriptions are written from a Scottish perspective, refining, but clearly linking to more generic UK, EC or OSPAR (Oslo and Paris Commission) commentary. Available information on the geographic distribution of the features was collated as part of the project and a summary map is provided in each description. Main findings  This project has generated a descriptive catalogue of the 81 PMFs that have been identified in the seas around Scotland (out to the limit of the UK continental shelf). The list comprises 26 broad habitats (e.g. burrowed mud), seven low or limited mobility species (e.g. ocean quahog) and 48 mobile species, including fish (e.g. blue ling) and marine mammals (e.g. minke whale).  Information on the distribution of the PMFs was collated within a Geographic Information System (GIS). This is the first time that data about such a diverse range of Scottish marine nature conservation interests have been compiled within a single repository. These data have and will be used in conjunction with other contextual base-mapping to inform the development of nature conservation advice and commentary (e.g. in the production of the Scotland’s Marine Atlas - Baxter et al., 2011).  The feature distribution mapping used in the production of this report is being made available to view online via the National Marine Plan Interactive web portal (NMPi - http://www.gov.scot/Topics/marine/seamanagement/nmpihome). As new or refined data on Scottish PMFs become available, these will be fed into updates to the project geodatabase and NMPi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highlights •We exposed meiofauna to 7 different large macrofauna species at high and low densities. •Macrofauna presence altered nematode community structure and reduced their abundance. •Macrofauna species had similar effects by reducing the few dominant nematode species. •Meio–macrofauna resource competition and spatial segregation are the main drivers. •Trawling effects on macrofauna affect nematode communities indirectly. Diverse assemblages of infauna in sediments provide important physical and biogeochemical services, but are under increasing pressure by anthropogenic activities, such as benthic trawling. It is known that trawling disturbance has a substantial effect on the larger benthic fauna, with reductions in density and diversity, and changes in community structure, benthic biomass, production, and bioturbation and biogeochemical processes. Largely unknown, however, are the mechanisms by which the trawling impacts on the large benthic macro- and megafauna may influence the smaller meiofauna. To investigate this, a mesocosm experiment was conducted whereby benthic nematode communities from a non-trawled area were exposed to three different densities (absent, low, normal) of 7 large (> 10 mm) naturally co-occurring, bioturbating species which are potentially vulnerable to trawling disturbance. The results showed that total abundances of nematodes were lower if these large macrofauna species were present, but no clear nematode abundance effects could be assigned to the macrofauna density differences. Nematode community structure changed in response to macrofauna presence and density, mainly as a result of the reduced abundance of a few dominant nematode species. Any detectable effects seemed similar for nearly all macrofauna species treatments, supporting the idea that there may be a general indirect, macrofauna-mediated trawling impact on nematode communities. Explanations for these results may be, firstly, competition for food resources, resulting in spatial segregation of the meio- and macrobenthic components. Secondly, different densities of large macrofauna organisms may affect the nematode community structure through different intensities of bioturbatory disturbance or resource competition. These results suggest that removal or reduced densities of larger macrofauna species as a result of trawling disturbance may lead to increased nematode abundance and hints at the validity of interference competition between large macrofauna organisms and the smaller meiofauna, and the energy equivalence hypothesis, where a trade-off is observed between groups of organisms that are dependent on a common source of energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: Oceanographic fronts are physical interfaces between water masses that differ in properties such as temperature, salinity, turbidity and chl a enrichment. Bio-physical coupling along fronts can lead to the development of pelagic biodiversity hotspots. A diverse range of marine vertebrates have been shown to associate with fronts, using them as foraging and migration habitats. Elucidation of the ecological significance of fronts generates a better understanding of marine ecosystem functioning, conferring opportunities to improve management of anthropogenic activities in the oceans. This study presents novel insight into the oceanographic drivers of habitat use in a population of marine turtles characterised by an oceanic-neritic foraging dichotomy. Using satellite tracking data from adult female loggerhead turtles nesting at Cape Verde (n = 12), we test the hypothesis that oceanic-foraging loggerheads associate with mesocale (10s – to 100s of km) thermal fronts. We use high-resolution (1 km) composite front mapping to characterise frontal activity in the Canary Current Large Marine Ecosystem (LME) over 2 temporal scales: (1) seasonal front frequency and (2) 7-day front metrics. Our use-availability analysis indicates that oceanic loggerheads show a preference for the highly productive upwelling region between Cape Verde and mainland Africa, an area of intense frontal activity. Within the upwelling region, turtles appear to forage epipelagically around mesoscale thermal fronts, exploiting profitable foraging opportunities resulting from physical aggregation of prey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: Oceanographic fronts are physical interfaces between water masses that differ in properties such as temperature, salinity, turbidity and chl a enrichment. Bio-physical coupling along fronts can lead to the development of pelagic biodiversity hotspots. A diverse range of marine vertebrates have been shown to associate with fronts, using them as foraging and migration habitats. Elucidation of the ecological significance of fronts generates a better understanding of marine ecosystem functioning, conferring opportunities to improve management of anthropogenic activities in the oceans. This study presents novel insight into the oceanographic drivers of habitat use in a population of marine turtles characterised by an oceanic-neritic foraging dichotomy. Using satellite tracking data from adult female loggerhead turtles nesting at Cape Verde (n = 12), we test the hypothesis that oceanic-foraging loggerheads associate with mesocale (10s – to 100s of km) thermal fronts. We use high-resolution (1 km) composite front mapping to characterise frontal activity in the Canary Current Large Marine Ecosystem (LME) over 2 temporal scales: (1) seasonal front frequency and (2) 7-day front metrics. Our use-availability analysis indicates that oceanic loggerheads show a preference for the highly productive upwelling region between Cape Verde and mainland Africa, an area of intense frontal activity. Within the upwelling region, turtles appear to forage epipelagically around mesoscale thermal fronts, exploiting profitable foraging opportunities resulting from physical aggregation of prey.