8 resultados para Kinetic art
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
Resumo:
Marine ecosystems are complex networks of organisms interacting either directly or indirectly while under the influence of the physical and chemical properties of the medium they inhabit. The interplay between these biological agents and their abiotic environment results in complex non-linear responses to individual and multiple stressors, influenced by feedbacks between these organisms and their environment. These ecosystems provide key services that benefit humanity such as food provisioning via the transfer of energy to exploited fish populations or climate regulation via the sinking, subsequent mineralization and ultimately storage of carbon in the ocean interior. These key characteristics or emergent features of marine ecosystems are subject to rapid change (e.g. regime shifts; Alheit et al., 2005 and Scheffer et al., 2009), with outcomes that are largely unpredictable in a deterministic sense. The North Atlantic Ocean is host to a number of such systems which are collectively being influenced by the unique physical and chemical features of this ocean basin, such as the Atlantic Meridional Overturning Circulation (AMOC), the basin’s ventilation with the Arctic Ocean, the dynamics of heat transport via the Gulf Stream and the formation of deep water at high latitudes. These features drive the solubility and biological pumps and support the production and environments that results in large exploited fish stocks. Our knowledge of its functioning as a coupled system, and in particular how it will respond to change, is still limited despite the scientific effort exerted over more than 100 years. This is due in part to the difficulty of providing synoptic overviews of a vast area, and to the fact that most fieldwork provides only snapshots of the complex physical, chemical and biological processes and their interactions. These constraints have in the past limited the development of a mechanistic understanding of the basin as a whole, and thus of the services it provides.