21 resultados para KIRKWOOD GAPS
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The UK and EU have recently committed to an ecosystem-based approach to the management of our marine environment. In line with the requirements of the Habitats regulations, all consents likely to significantly affect Special Areas of Conservation (SACs) and Special Protection Areas (SPAs) are to be reviewed. As part of this process, 'site characterisation' is seen as an important first step towards the improved management of designated sites. This characterisation series, undertaken by the Marine Biological Association of the United Kingdom and funded by the Environment Agency and English Nature, sets out to determine the current status of designated marine sites in South West England, and how vulnerable (or robust) they are to contaminants (metals, organics, nutrients) and other anthropogenic pressures. Using published information and unpublished data-sets from regulatory agencies, conservation bodies and research institutes (particularly those of the PMPS*), evidence is compiled on the links between potentially harmful 'activities', environmental quality, and resultant biological consequences. This includes an evaluation of long-term change. The focus is the effect of water and sediment quality on the key interest features of European Marine sites in the South West of England, namely: - Fal and Helford cSAC (MBA Occasional Publication 8) - Plymouth Sound and Estuaries cSAC/ SPA (MBA Occasional Publication 9) - Exe Estuary SPA (MBA Occasional Publication 10) - Chesil and the Fleet cSAC/ SPA (MBA Occasional Publication 11) - Poole Harbour SPA (MBA Occasional Publication 12) - Severn Estuary pSAC/SPA (MBA Occasional Publication 13) Detailed analysis for each of these sites is provided individually. The summary report contains an overview of physical properties, uses and vulnerability for each of these sites, together with brief comparisons of pollution sources, chemical exposure (via sediment and water) and evidence of biological impact (from bioaccumulation to community-level response). Limitations of the data, and gaps in our understanding of these systems are highlighted and suggestions are put forward as to where future research and surveillance is most needed. Hopefully this may assist the statutory authorities in targeting future monitoring and remedial activities. * PMSP: Plymouth Marine Sciences Partnership, comprising the Marine Biological Association (MBA), University of Plymouth (UoP), the Sir Alister Hardy Foundation for Ocean Science, and Plymouth Marine Laboratories (PML)
Resumo:
This review provides insights into the distribution and impact of oestrogens and xeno-oestrogens in the aquatic environment and highlights some significant knowledge gaps in our understanding of endocrine disrupting chemicals. Key areas of uncertainty in the assessment of risk include the role of estuarine sediments in mediating the fate and bioavailability of environmental (xeno)oestrogens (notably their transfer to benthic organisms and estuarine food chains), together with evidence for endocrine disruption in invertebrate populations. Emphasis is placed on using published information to interpret the behaviour and effects of a small number of model compounds thought to contribute to oestrogenic effects in nature; namely, the natural steroid 17 beta -oestradiol (E2) and the synthetic hormone 17 alpha -ethinyloestradiol (EE2), together with the alkyl-phenols octyl- and nonyl-phenol (OP, NP) as oestrogen mimics. Individual sections of the review are devoted to sources and concentrations of (xeno)oestrogens in waterways, sediment partitioning and persistence, bioaccumulation rates and routes, assays and biomarkers of oestrogenicity, and, finally, a synopsis of reproductive and ecological effects in aquatic species.
Resumo:
The purpose of this report is to give an overview of plankton ecology in the North Sea, and the processes that effect it, as derived from current research. The Sir Alister Hardy Foundation has extensive data for the North Sea area, and other sources have also been used to provide information for this report. Shortfalls in current research have also been highlighted. The information contained herein is to be contributed towards an information base for the Strategic Environmental Assessment. The North Sea is an extension of the North Atlantic that has an area of 574,980 km2. The deepest area is off the coast of Norway (660m), with a number of shallow areas, such as the Dogger Bank (15m). The North Sea represents a large source of hydrocarbons that have been exploited since the early 1970s. The aim of this study is to provide the Department of Trade and Industry with biological data on the planktonic community of the North Sea, as a contribution towards the Strategic Environmental Assessment (SEA 2). An overview of phyto- and zoo- plankton community composition, plankton blooms, Calanus, mero-, pico- and megaplankton, sensitivity to disturbance / contamination, phytodetritus and vertical fluxes and the resting stages of phytoplankton is made using the results of the survey database. Additional published literature has also been used, and gaps in available data have been highlighted. 1.3 The Continuous Plankton Recorder (CPR) survey provides a unique long-term dataset of plankton abundance in the North Atlantic and North Sea (Warner and Hays 1994). The survey has been running for almost 70 years, using ‘ships of opportunity’ to tow CPRs on regular, and incidental routes, sampling at a depth of 10 m. Each sample represents 18 km of tow and approximately 3 m3 of filtered seawater. Over 400 taxa of plankton are routinely identified by a team of taxonomists. The samples are also compared to colour charts to give an indication of ‘greenness’, which provides a visual index of chlorophyll value. CPRs have been towed for over 4 million nautical miles, accumulating almost 200,000 samples. The design of the CPR has remained virtually unchanged since sampling started, thus providing a consistency of sampling that provides good historical comparisons. By systematically monitoring the plankton over a period, changes in abundance and long term trends can be distinguished. From this baseline data, inferences can be made, particularly concerning climate change and potentialanthropogenic impacts.
Resumo:
Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved.
Resumo:
1.Commercial fishing is an important socio-economic activity in coastal regions of the UK and Ireland. Ocean–atmospheric changes caused by greenhouse gas emissions are likely to affect future fish and shellfish production, and lead to increasing challenges in ensuring long-term sustainable fisheries management. 2.The paper reviews existing knowledge and understanding of the exposure of marine ecosystems to ocean-atmospheric changes, the consequences of these changes for marine fisheries in the UK and Ireland, and the adaptability of the UK and Irish fisheries sector. 3.Ocean warming is resulting in shifts in the distribution of exploited species and is affecting the productivity of fish stocks and underlying marine ecosystems. In addition, some studies suggest that ocean acidification may have large potential impacts on fisheries resources, in particular shell-forming invertebrates. 4.These changes may lead to loss of productivity, but also the opening of new fishing opportunities, depending on the interactions between climate impacts, fishing grounds and fleet types. They will also affect fishing regulations, the price of fish products and operating costs, which in turn will affect the economic performance of the UK and Irish fleets. 5.Key knowledge gaps exist in our understanding of the implications of climate and ocean chemistry changes for marine fisheries in the UK and Ireland, particularly on the social and economic responses of the fishing sectors to climate change. However, these gaps should not delay climate change mitigation and adaptation policy actions, particularly those measures that clearly have other ‘co-benefits’.
Resumo:
Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.
Resumo:
This report about the Severn Estuary provides an up to date appraisal of the following issues: Transport and fate of sediments; Transport, fate and trends in contaminants; Bioavailability of contaminants; Consequences for biota, and pinpoints the major knowledge gaps.
Resumo:
Phytoplankton abundance in the NW Atlantic was measured by continuous plankton recorder (CPR) sampling along tracks between Iceland and the western Scotian Shelf from 1998 to 2006, when sea-surface chlorophyll (SSChl) measurements were also being made by ocean colour satellite imagery using the SeaWiFS sensor. Seasonal and inter-annual changes in phytoplankton abundance were examined using data collected by both techniques, averaged over each of four shelf regions and four deep ocean regions. CPR sampling had gaps (missing months) in all regions and in the four deep ocean regions satellite observations were too sparse between November and February to be of use. Average seasonal cycles of SSChl were similar to those of total diatom abundance in seven regions, to those of the phytoplankton colour index in six regions, but were not similar to those of total dinoflagellate abundance anywhere. Large inter-annual changes in spring bloom dynamics were captured by both samplers in shelf regions. Changes in annual (or 8 months) averages of SSChl did not generally follow those of the CPR indices within regions and multi-year averages of SSChl, and the three CPR indices were generally higher in shelf than in deep ocean regions. Remote sensing and CPR sampling provide complementary ways of monitoring phytoplankton in the ocean: the former has superior temporal and spatial coverage and temporal resolution, and the latter provides better taxonomic information.
Resumo:
The detection of dense harmful algal blooms (HABs) by satellite remote sensing is usually based on analysis of chlorophyll-a as a proxy. However, this approach does not provide information about the potential harm of bloom, nor can it identify the dominant species. The developed HAB risk classification method employs a fully automatic data-driven approach to identify key characteristics of water leaving radiances and derived quantities, and to classify pixels into “harmful”, “non-harmful” and “no bloom” categories using Linear Discriminant Analysis (LDA). Discrimination accuracy is increased through the use of spectral ratios of water leaving radiances, absorption and backscattering. To reduce the false alarm rate the data that cannot be reliably classified are automatically labelled as “unknown”. This method can be trained on different HAB species or extended to new sensors and then applied to generate independent HAB risk maps; these can be fused with other sensors to fill gaps or improve spatial or temporal resolution. The HAB discrimination technique has obtained accurate results on MODIS and MERIS data, correctly identifying 89% of Phaeocystis globosa HABs in the southern North Sea and 88% of Karenia mikimotoi blooms in the Western English Channel. A linear transformation of the ocean colour discriminants is used to estimate harmful cell counts, demonstrating greater accuracy than if based on chlorophyll-a; this will facilitate its integration into a HAB early warning system operating in the southern North Sea.
Resumo:
Free-ocean CO2 enrichment (FOCE) systems are designed to assess the impact of ocean acidification on biological communities in situ for extended periods of time (weeks to months). They overcome some of the drawbacks of laboratory experiments and field observations by enabling (1) precise control of CO2 enrichment by monitoring pH as an offset of ambient pH, (2) consideration of indirect effects such as those mediated through interspecific relationships and food webs, and (3) relatively long experiments with intact communities. Bringing perturbation experiments from the laboratory to the field is, however, extremely challenging. The main goal of this paper is to provide guidelines on the general design, engineering, and sensor options required to conduct FOCE experiments. Another goal is to introduce xFOCE, a community-led initiative to promote awareness, provide resources for in situ perturbation experiments, and build a user community. Present and existing FOCE systems are briefly described and examples of data collected presented. Future developments are also addressed as it is anticipated that the next generation of FOCE systems will include, in addition to pH, options for oxygen and/or temperature control. FOCE systems should become an important experimental approach for projecting the future response of marine ecosystems to environmental change.
Resumo:
Marine ecosystems provide many ecosystem goods and services. However, these ecosystems and the benefits they create for humans are subject to competing uses and increasing pressures. As a consequence of the increasing threats to the marine environment, several regulations require applying an ecosystem-based approach for managing the marine environment. Within the Mediterranean Sea, in 2008, the Contracting Parties of the Mediterranean Action Plan decided to progressively apply the Ecosystem Approach (EcAp) with the objective of achieving Good Environmental Status (GES) for 2018. To assess the Environmental Status, the EcAp proposes 11 Ecological Objectives, each of which requires a set of relevant indicators to be integrated. Progress towards the EcAp entails a gradual and important challenge for North-African countries, and efforts have to be initiated to propose and discuss methods. Accordingly, to enhance the capacity of North-African countries to implement EcAp and particularly to propose and discuss indicators and methods to assess GES, the aim of this manuscript is to identify the practical problems and gaps found at each stage of the Environmental Status assessment process. For this purpose, a stepwise method has been proposed to assess the Environmental Status using Ecologic Objective 5-Eutrophication as example.
Resumo:
Marine ecosystems provide many ecosystem goods and services. However, these ecosystems and the benefits they create for humans are subject to competing uses and increasing pressures. As a consequence of the increasing threats to the marine environment, several regulations require applying an ecosystem-based approach for managing the marine environment. Within the Mediterranean Sea, in 2008, the Contracting Parties of the Mediterranean Action Plan decided to progressively apply the Ecosystem Approach (EcAp) with the objective of achieving Good Environmental Status (GES) for 2018. To assess the Environmental Status, the EcAp proposes 11 Ecological Objectives, each of which requires a set of relevant indicators to be integrated. Progress towards the EcAp entails a gradual and important challenge for North-African countries, and efforts have to be initiated to propose and discuss methods. Accordingly, to enhance the capacity of North-African countries to implement EcAp and particularly to propose and discuss indicators and methods to assess GES, the aim of this manuscript is to identify the practical problems and gaps found at each stage of the Environmental Status assessment process. For this purpose, a stepwise method has been proposed to assess the Environmental Status using Ecologic Objective 5-Eutrophication as example.