6 resultados para John E. Fogarty International Center for Advanced Study in the Health Sciences.
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Regime shifts have been reported in many marine ecosystems, and are often expressed as an abrupt change occurring in multiple physical and biological components of the system. In the Gulf of Alaska, a regime shift in the late 1970s was observed, indicated by an abrupt increase in sea surface temperature and major shifts in the catch of many fish species. This late 1970s regime shift in the Gulf of Alaska was followed by another shift in the late 1980s, not as pervasive as the 1977 shift, but which nevertheless did not return to the prior state. A thorough understanding of the extent and mechanisms leading to such regime shifts is challenged by data paucity in time and space. We investigate the ability of a suite of ocean biogeochemistry models of varying complexity to simulate regime shifts in the Gulf of Alaska by examining the presence of abrupt changes in time series of physical variables (sea surface temperature and mixed layer depth), nutrients and biological variables (chlorophyll, primary productivity and plankton biomass) using change-point analysis. Our study demonstrates that ocean biogeochemical models are capable of simulating the late 1970s shift, indicating an abrupt increase in sea surface temperature forcing followed by an abrupt decrease in nutrients and biological productivity. This predicted shift is consistent among all the models, although some of them exhibit an abrupt transition (i.e. a significant shift from one year to the next), whereas others simulate a smoother transition. Some models further suggest that the late 1980s shift was constrained by changes in mixed layer depth. Our study demonstrates that ocean biogeochemical can successfully simulate regime shifts in the Gulf of Alaska region, thereby providing better understanding of how changes in physical conditions are propagated from lower to upper trophic levels through bottom-up controls.
Resumo:
A regional cross-calibration between the first Delay Doppler altimetry dataset from Cryosat-2 and a retracked Envisat dataset is here presented, in order to test the benefits of the Delay-Doppler processing and to expand the Envisat time series in the coastal ocean. The Indonesian Seas are chosen for the calibration, since the availability of altimetry data in this region is particularly beneficial due to the lack of in-situ measurements and its importance for global ocean circulation. The Envisat data in the region are retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker, which has been previously validated and applied successfully to coastal sea level research. The study demonstrates that CryoSat-2 is able to decrease the 1-Hz noise of sea level estimations by 0.3 cm within 50 km of the coast, when compared to the ALES-reprocessed Envisat dataset. It also shows that Envisat can be confidently used for detailed oceanographic research after the orbit change of October 2010. Cross-calibration at the crossover points indicates that in the region of study a sea state bias correction equal to 5% of the significant wave height is an acceptable approximation for Delay-Doppler altimetry. The analysis of the joint sea level time series reveals the geographic extent of the semiannual signal caused by Kelvin waves during the monsoon transitions, the larger amplitudes of the annual signal due to the Java Coastal Current and the impact of the strong La Nina event of 2010 on rising sea level trends.
Resumo:
A regional cross-calibration between the first Delay Doppler altimetry dataset from Cryosat-2 and a retracked Envisat dataset is here presented, in order to test the benefits of the Delay-Doppler processing and to expand the Envisat time series in the coastal ocean. The Indonesian Seas are chosen for the calibration, since the availability of altimetry data in this region is particularly beneficial due to the lack of in-situ measurements and its importance for global ocean circulation. The Envisat data in the region are retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker, which has been previously validated and applied successfully to coastal sea level research. The study demonstrates that CryoSat-2 is able to decrease the 1-Hz noise of sea level estimations by 0.3 cm within 50 km of the coast, when compared to the ALES-reprocessed Envisat dataset. It also shows that Envisat can be confidently used for detailed oceanographic research after the orbit change of October 2010. Cross-calibration at the crossover points indicates that in the region of study a sea state bias correction equal to 5% of the significant wave height is an acceptable approximation for Delay-Doppler altimetry. The analysis of the joint sea level time series reveals the geographic extent of the semiannual signal caused by Kelvin waves during the monsoon transitions, the larger amplitudes of the annual signal due to the Java Coastal Current and the impact of the strong La Nina event of 2010 on rising sea level trends.
Resumo:
Seasonal and inter-annual variations in phytoplankton community abundance in the Bay of Biscay are studied. Preliminarily processed by the National Aeronautics and Space Administration (NASA) to yield normalized water-leaving radiance and the top-of-the-atmosphere solar radiance, Sea-viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Coastal Zone Color Scanner (CZCS) data are further supplied to our dedicated retrieval algorithms to infer the sought for parameters. By applying the National Oceanic and Atmospheric Administration's (NOAA's) Advanced Very High Resolution Radiometer (AVHRR) data, the surface reflection coefficient in the only band in the visible spectrum is derived and employed for analysis. Decadal bridged time series of variations of diatom-dominated phytoplankton and green dinoflagellate Lepidodinium chlorophorum within the shelf zone and the coccolithophore Emiliania huxleyi in the pelagic area of the Bay are documented and analysed in terms of impacts of some biogeochemical and geophysical forcing factors.