10 resultados para Itú

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unprecedented basin-scale ecological changes are occurring in our seas. As temperature and carbon dioxide concentrations increase, the extent of sea ice is decreasing, stratification and nutrient regimes are changing, and pH is decreasing. These unparalleled changes present new challenges for managing our seas as we are only just beginning to understand the ecological manifestations of these climate alterations. The Marine Strategy Framework Directive requires all European Member States to achieve Good Environmental Status (GES) in their seas by 2020; this means management toward GES will take place against a background of climate-driven macroecological change. Each Member State must set environmental targets to achieve GES; however, in order to do so an understanding of large-scale ecological change in the marine ecosystem is necessary. Much of our knowledge of macroecological change in the North Atlantic is a result of research using data gathered by the Continuous Plankton Recorder (CPR) survey, a near-surface plankton monitoring program which has been sampling in the North Atlantic since 1931. CPR data indicate that North Atlantic and North Sea plankton dynamics are responding to both climate and human-induced changes, presenting challenges to the development of pelagic targets for achievement of GES in European seas. Thus the continuation of long-term ecological time-series such as the CPR is crucial for informing and supporting the sustainable management of European seas through policy mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MURAWSKI AND COLLEAGUES STATE THAT OUR assessment of the impacts of global marine biodiversity loss is overly pessimistic. They imply that management interventions are likely to reverse current trends of overfishing, and that the U.S. National Marine Fisheries Service (NMFS) has already met that goal. They cite Georges Bank haddock as an example and contest that catch metrics (as used in our global analysis) are sufficient to track the status of this particular fish stock and possibly others. We agree that precise biomass data are preferable, but these are rarely available. Here, we illustrate that catches are a good proxy of the status of haddock, although there can be a short delay in detecting recovery under intense management. While NMFS’s own data show that full recovery is still uncommon (<5% of overfished stocks) (1), we strongly agree that destructive trends can be turned around and that rebuilding efforts need to be intensified to meet that goal. But we must not miss the forest for the trees: Continuing focus on single, well-assessed, economically viable species will leave most of the ocean’s declining biodiversity under the radar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Giant viruses are known to be significant mortality agents of phytoplankton, often being implicated in the terminations of large Emiliania huxleyi blooms. We have previously shown the high temporal variability of E. huxleyi-infecting coccolithoviruses (EhVs) within a Norwegian fjord mesocosm. In the current study we investigated EhV dynamics within a naturally-occurring E. huxleyi bloom in the Western English Channel. Using denaturing gradient gel electrophoresis and marker gene sequencing, we uncovered a spatially highly dynamic Coccolithovirus population that was associated with a genetically stable E. huxleyi population as revealed by the major capsid protein gene (mcp) and coccolith morphology motif (CMM), respectively. Coccolithoviruses within the bloom were found to be variable with depth and unique virus populations were detected at different stations sampled indicating a complex network of EhV-host infections. This ultimately will have significant implications to the internal structure and longevity of ecologically important E. huxleyi blooms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare the long-term and seasonal patterns of abundance and phenology of the cyclopoid copepod Oithona similis at the L4 site (1988–2013) in the North Atlantic and at the LTER-MC site (1984–2013) in the Mediterranean Sea to investigate whether high temperature limits the occurrence of this species with latitudinal cline. The two sites are well suited to testing this hypothesis as they are characterized by similar chlorophyll a concentration (Chl a) but different temperature [sea surface temperature (SST)]. The abundance of O. similis at L4 was ∼10 times higher than at LTER-MC. Moreover, this species had several peaks of abundance during the year at L4 but a single peak in spring at LTER-MC. The main mode of temporal variability in abundance was seasonal at both sites. The abundance of O. similis was negatively correlated with SST only at LTER-MC, whereas it was positively correlated with Chl a at both sites. Oithona similis had a temperature optimum between 15 and 20°C reaching maximum abundance at ∼16.5°C at LTER-MC, but showed no Chl a optimum at either site. We conclude that the abundance of O. similis increases with prey availability up to 16.5°C and that temperature >20°C represents the main limiting factor for population persistence.