120 resultados para Interdecadal Variability
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Long-term regional changes in phytoplankton biomass in the Northeast Atlantic and North Sea are investigated using data from the Continuous Plankton Recorder survey. During the last decade there have been large changes in the long-term variation in phytoplankton biomass in the Northeast Atlantic and North Sea. Most regions, particularly in the North Sea, have shown a considerable increase in phytoplankton biomass while the opposite pattern was seen in the northern oceanic region of the Northeast Atlantic. These different spatial responses show similar patterns of change to the decadal variability in sea surface temperature influenced by the North Atlantic Oscillation index. Two rare oceanographic events and their relationship to the interannual changes in phytoplankton biomass are discussed. The results highlight the importance of maintaining long-term biological monitoring programmes to assess the biological responses to slow oceanic/atmospheric processes and to rare or episodic physical events.
Resumo:
In the more than 50 years that the Continuous Plankton Recorder (CPR) survey has operated on a regular monthly basis in the north-east Atlantic and North Sea, large changes have been witnessed in the planktonic ecosystem. These changes have taken the form of long-term trends in abundance for certain species or stepwise changes for others, and in many cases are correlated with a mode of climatic variability in the North Atlantic, either: (1) the North Atlantic Oscillation (NAO), a basin-scale atmospheric alteration of the pressure field between the Azores high pressure cell and the Icelandic Low; or (2) the Gulf Stream Index (GSI), which measures the latitudinal position of the north wall of the Gulf Stream. Recent work has shown that the changes in the GSI are coupled with the NAO and Pacific Southern Oscillation with a 2 year lag. The plankton variability is also possibly linked to changes observed in the distribution and flux of water masses in the surface, intermediate and deep waters of the North Atlantic. For example, in the last two decades, the extent and location of the formation of North Atlantic Deep Water, Labrador Sea Intermediate Water and Norwegian Sea intermediate and upper-layer water has altered considerably. This paper discusses the extent to which observed changes in plankton abundance and distribution may be linked to this basin-scale variability in hydrodynamics. The results are also placed within the context of global climate warming and the possible effects of the observed melting of Arctic permafrost and sea ice on the subpolar North Atlantic.
Resumo:
Procedures for the continuous in situ recording of salinity, temperature, dissolved oxygen concentration, pH and turbidity throughout an estuarine mixing profile have been developed. Application of these procedures in a study of the Tamar Estuary, south-west England has demonstrated the considerable temporal (short-term and seasonal) and geographical variability of these properties. The causes and interrelationships of this variability and their general implications with respect to field investigations of estuarine chemical interactions are discussed.
Resumo:
The vertical distribution, seasonal and ontogenetic migrations and seasonal variability in abundance of Thysanoessa longicaudata (Krøyer) were investigated using the Longhurst-Hardy Plankton Recorder for a 4 yr period (March, 1971 to May, 1975) at Ocean Weather Station “I” (59°00′N; 19°00′W) in the north-eastern Atlantic Ocean. Of 8 species of euphausiids identified at this position, the vast majority were T. longicaudata (for example, 99.5% of the total euphausiids in 1972 belonged to this species). From March to October the majority of calyptopes, furciliae and adults of T. longicaudata were found in the upper 100 m. The major spawning occurred in spring at a water temperature of 9° to 10°C and calyptopes and furciliae appeared in late April, reaching their maximum abundance in May. There was no evidence of large-scale diurnal migrations, although an extensive ontogenetic migration of young developmental stages was observed. The eggs were found from 100 m down to 800 m, the maximum depth of sampling, and the vertical distribution of the three naupliar stages showed a “developmental ascent” as they matured. During the main reproductive period in May, over 70% of all nauplii were below 500 m while more than 94% of Calyptopis Stage I were above 500 m with their maximum abundance in the euphotic zone (0 to 50 m). Calyptopis Stage I is the first feeding stage and it is this stage which shows the largest ontogenetic migration. Brief descriptions of the egg and nauplii are given.