8 resultados para Industrial microorganisms
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Conversion Of Kelp Debris And Fecal Material From The Mussel Aulacomya-Ater By Marine Microorganisms
Resumo:
The impact of a sub-seabed CO2 leak from geological sequestration on the microbial process of ammonia oxidation was investigated in the field. Sediment samples were taken before, during and after a controlled sub-seabed CO2 leak at four zones differing in proximity to the CO2 source (epicentre, and 25m, 75m, and 450m distant). The impact of CO2 release on benthic microbial ATP levels was compared to ammonia oxidation rates and the abundance of bacterial and archaeal ammonia amoA genes and transcripts, and also to the abundance of nitrite oxidize (nirS) and anammox hydrazine oxidoreductase (hzo) genes and transcripts. The major factor influencing measurements was seasonal: only minor differences were detected at the zones impacted by CO2 (epicentre and 25m distant). This included a small increase to ammonia oxidation after 37daysof CO2 release which was linked to an increase in ammonia availability as a result of mineral dissolution. A CO2 leak on the scale used within this study (<1tonneday−1) would have very little impact to ammonia oxidation within coastal sediments. However, seawater containing 5% CO2 did reduce rates of ammonia oxidation. This was linked to the buffering capacity of the sediment, suggesting that the impact of a sub-seabed leak of stored CO2 on ammonia oxidation would be dependent on both the scale of the CO2 release and sediment type.
Resumo:
The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.