16 resultados para Indirect antibody competition ELISA

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highlights •We exposed meiofauna to 7 different large macrofauna species at high and low densities. •Macrofauna presence altered nematode community structure and reduced their abundance. •Macrofauna species had similar effects by reducing the few dominant nematode species. •Meio–macrofauna resource competition and spatial segregation are the main drivers. •Trawling effects on macrofauna affect nematode communities indirectly. Diverse assemblages of infauna in sediments provide important physical and biogeochemical services, but are under increasing pressure by anthropogenic activities, such as benthic trawling. It is known that trawling disturbance has a substantial effect on the larger benthic fauna, with reductions in density and diversity, and changes in community structure, benthic biomass, production, and bioturbation and biogeochemical processes. Largely unknown, however, are the mechanisms by which the trawling impacts on the large benthic macro- and megafauna may influence the smaller meiofauna. To investigate this, a mesocosm experiment was conducted whereby benthic nematode communities from a non-trawled area were exposed to three different densities (absent, low, normal) of 7 large (> 10 mm) naturally co-occurring, bioturbating species which are potentially vulnerable to trawling disturbance. The results showed that total abundances of nematodes were lower if these large macrofauna species were present, but no clear nematode abundance effects could be assigned to the macrofauna density differences. Nematode community structure changed in response to macrofauna presence and density, mainly as a result of the reduced abundance of a few dominant nematode species. Any detectable effects seemed similar for nearly all macrofauna species treatments, supporting the idea that there may be a general indirect, macrofauna-mediated trawling impact on nematode communities. Explanations for these results may be, firstly, competition for food resources, resulting in spatial segregation of the meio- and macrobenthic components. Secondly, different densities of large macrofauna organisms may affect the nematode community structure through different intensities of bioturbatory disturbance or resource competition. These results suggest that removal or reduced densities of larger macrofauna species as a result of trawling disturbance may lead to increased nematode abundance and hints at the validity of interference competition between large macrofauna organisms and the smaller meiofauna, and the energy equivalence hypothesis, where a trade-off is observed between groups of organisms that are dependent on a common source of energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climatic oscillations as reflected in atmospheric modes such as the North Atlantic Oscillation (NAO) may be seen as a proxy for regulating forces in aquatic and terrestrial ecosystems. Our review highlights the variety of climate processes related to the NAO and the diversity in the type of ecological responses that different biological groups can display. Available evidence suggests that the NAO influences ecological dynamics in both marine and terrestrial systems, and its effects may be seen in variation at the individual, population and community levels. The ecological responses to the NAO encompass changes in timing of reproduction, population dynamics, abundance, spatial distribution and interspecific relationships such as competition and predator-prey relationships. This indicates that local responses to large-scale changes may be more subtle than previously suggested. We propose that the NAO effects may be classified as three types: direct, indirect and integrated. Such a classification will help the design and interpretation of analyses attempting to relate ecological changes to the NAO and, possibly, to climate in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seger has argued that, if a law of diminishing returns of personal fitness with increasing consumption of a limiting resource applies, a greater increment to inclusive fitness3 may accrue to an individual by sharing the resource with its relatives than by excluding them. That is, from the point of view of an individual's inclusive fitness, there will exist an optimal relation between resource abundance, conversion efficiency (in terms of increment in personal fitness per resource unit consumed) and competitor abundance and relatedness to the subject. Here, this is rendered more concrete by deriving expressions for the optimum consumption rate for any one of a number of related individuals competing for a finite resource.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mesocosm experiment was conducted to quantify the effects of reduced pH and elevated temperature on an intact marine invertebrate community. Standardised faunal communities, collected from the extreme low intertidal zone using artificial substrate units, were exposed to one of eight nominal treatments (four pH levels: 8.0, 7.7, 7.3 and 6.7, crossed with two temperature levels: 12 and 16°C). After 60 days exposure communities showed significant changes in structure and lower diversity in response to reduced pH. The response to temperature was more complex. At higher pH levels (8.0 and 7.7) elevated temperature treatments contained higher species abundances and diversity than the lower temperature treatments. In contrast, at lower pH levels (7.3 and 6.7), elevated temperature treatments had lower species abundances and diversity than lower temperature treatments. The species losses responsible for these changes in community structure and diversity were not randomly distributed across the different phyla examined. Molluscs showed the greatest reduction in abundance and diversity in response to low pH and elevated temperature, whilst annelid abundance and diversity was mostly unaffected by low pH and was higher at the elevated temperature. The arthropod response was between these two extremes with moderately reduced abundance and diversity at low pH and elevated temperature. Nematode abundance increased in response to low pH and elevated temperature, probably due to the reduction of ecological constraints, such as predation and competition, caused by a decrease in macrofaunal abundance. This community-based mesocosm study supports previous suggestions, based on observations of direct physiological impacts, that ocean acidification induced changes in marine biodiversity will be driven by differential vulnerability within and between different taxonomical groups. This study also illustrates the importance of considering indirect effects that occur within multispecies assemblages when attempting to predict the consequences of ocean acidification and global warming on marine communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the mechanisms that maintain biodiversity is a fundamental problem in ecology. Competition is thought to reduce diversity, but hundreds of microbial aquatic primary producers species coexist and compete for a few essential resources (e.g., nutrients and light). Here, we show that resource competition is a plausible mechanism for explaining clumpy distribution on individual species volume (a proxy for the niche) of estuarine phytoplankton communities ranging from North America to South America and Europe, supporting the Emergent Neutrality hypothesis. Furthermore, such a clumpy distribution was also observed throughout the Holocene in diatoms from a sediment core. A Lotka-Volterra competition model predicted position in the niche axis and functional affiliation of dominant species within and among clumps. Results support the coexistence of functionally equivalent species in ecosystems and indicate that resource competition may be a key process to shape the size structure of estuarine phytoplankton, which in turn drives ecosystem functioning.