4 resultados para In-memory databases
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The use of in situ measurements is essential in the validation and evaluation of the algorithms that provide coastal water quality data products from ocean colour satellite remote sensing. Over the past decade, various types of ocean colour algorithms have been developed to deal with the optical complexity of coastal waters. Yet there is a lack of a comprehensive intercomparison due to the availability of quality checked in situ databases. The CoastColour Round Robin (CCRR) project, funded by the European Space Agency (ESA), was designed to bring together three reference data sets using these to test algorithms and to assess their accuracy for retrieving water quality parameters. This paper provides a detailed description of these reference data sets, which include the Medium Resolution Imaging Spectrometer (MERIS) level 2 match-ups, in situ reflectance measurements, and synthetic data generated by a radiative transfer model (HydroLight). These data sets, representing mainly coastal waters, are available from doi:10.1594/PANGAEA.841950. The data sets mainly consist of 6484 marine reflectance (either multispectral or hyperspectral) associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: total suspended matter (TSM) and chlorophyll a (CHL) concentrations, and the absorption of coloured dissolved organic matter (CDOM). Inherent optical properties are also provided in the simulated data sets (5000 simulations) and from 3054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three data sets are compared. Match-up and in situ sites where deviations occur are identified. The distributions of the three reflectance data sets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.
Resumo:
To evaluate the performance of ocean-colour retrievals of total chlorophyll-a concentration requires direct comparison with concomitant and co-located in situ data. For global comparisons, these in situ match-ups should be ideally representative of the distribution of total chlorophyll-a concentration in the global ocean. The oligotrophic gyres constitute the majority of oceanic water, yet are under-sampled due to their inaccessibility and under-represented in global in situ databases. The Atlantic Meridional Transect (AMT) is one of only a few programmes that consistently sample oligotrophic waters. In this paper, we used a spectrophotometer on two AMT cruises (AMT19 and AMT22) to continuously measure absorption by particles in the water of the ship's flow-through system. From these optical data continuous total chlorophyll-a concentrations were estimated with high precision and accuracy along each cruise and used to evaluate the performance of ocean-colour algorithms. We conducted the evaluation using level 3 binned ocean-colour products, and used the high spatial and temporal resolution of the underway system to maximise the number of match-ups on each cruise. Statistical comparisons show a significant improvement in the performance of satellite chlorophyll algorithms over previous studies, with root mean square errors on average less than half (~ 0.16 in log10 space) that reported previously using global datasets (~ 0.34 in log10 space). This improved performance is likely due to the use of continuous absorption-based chlorophyll estimates, that are highly accurate, sample spatial scales more comparable with satellite pixels, and minimise human errors. Previous comparisons might have reported higher errors due to regional biases in datasets and methodological inconsistencies between investigators. Furthermore, our comparison showed an underestimate in satellite chlorophyll at low concentrations in 2012 (AMT22), likely due to a small bias in satellite remote-sensing reflectance data. Our results highlight the benefits of using underway spectrophotometric systems for evaluating satellite ocean-colour data and underline the importance of maintaining in situ observatories that sample the oligotrophic gyres.
Resumo:
To evaluate the performance of ocean-colour retrievals of total chlorophyll-a concentration requires direct comparison with concomitant and co-located in situ data. For global comparisons, these in situ match-ups should be ideally representative of the distribution of total chlorophyll-a concentration in the global ocean. The oligotrophic gyres constitute the majority of oceanic water, yet are under-sampled due to their inaccessibility and under-represented in global in situ databases. The Atlantic Meridional Transect (AMT) is one of only a few programmes that consistently sample oligotrophic waters. In this paper, we used a spectrophotometer on two AMT cruises (AMT19 and AMT22) to continuously measure absorption by particles in the water of the ship's flow-through system. From these optical data continuous total chlorophyll-a concentrations were estimated with high precision and accuracy along each cruise and used to evaluate the performance of ocean-colour algorithms. We conducted the evaluation using level 3 binned ocean-colour products, and used the high spatial and temporal resolution of the underway system to maximise the number of match-ups on each cruise. Statistical comparisons show a significant improvement in the performance of satellite chlorophyll algorithms over previous studies, with root mean square errors on average less than half (~ 0.16 in log10 space) that reported previously using global datasets (~ 0.34 in log10 space). This improved performance is likely due to the use of continuous absorption-based chlorophyll estimates, that are highly accurate, sample spatial scales more comparable with satellite pixels, and minimise human errors. Previous comparisons might have reported higher errors due to regional biases in datasets and methodological inconsistencies between investigators. Furthermore, our comparison showed an underestimate in satellite chlorophyll at low concentrations in 2012 (AMT22), likely due to a small bias in satellite remote-sensing reflectance data. Our results highlight the benefits of using underway spectrophotometric systems for evaluating satellite ocean-colour data and underline the importance of maintaining in situ observatories that sample the oligotrophic gyres.
Resumo:
As well as range, the AltiKa altimeter provides estimates of wave height, Hs and normalized backscatter, s0, that need to be assessed prior to statistics based on them being included in climate databases. An analysis of crossovers with the Jason-2 altimeter shows AltiKa Hs values to be biased high by only »0.05m, with a standard deviation (s.d.) of »0.1m for seven-point averages. AltiKa’s s 0 values are 2.5–3 dB less than those from Jason-2, with a s.d. of »0.3 dB, with these relatively large mismatches to be expected as AltiKa measures a different part of the spectrum of sea surface roughness. A new wind speed algorithm is developed through matchinghistogram of s0 values to that for Jason-2 wind speeds. The algorithm is robust to the use of short durations of data, with a consistency at roughly the 0.1 m/s level. Incorporation of Hs as a secondary input reduces the assessed error at crossovers from 0.82 m/s to 0.71 m/s. A comparison across all altimeter frequencies used to date demonstrates that the lowest wind speeds preferentially develop the shortest scales of roughness.