4 resultados para INDICATOR SPECIES ANALYSIS
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.
Resumo:
Abstract Molecular probe-based methods (Fluorescent in-situ hybridisation or FISH, Next Generation Sequencing or NGS) have proved successful in improving both the efficiency and accuracy of the identification of microorganisms, especially those that lack distinct morphological features, such as picoplankton. However, FISH methods have the major drawback that they can only identify one or just a few species at a time because of the reduced number of available fluorochromes that can be added to the probe. Although the length of sequence that can be obtained is continually improving, NGS still requires a great deal of handling time, its analysis time is still months and with a PCR step it will always be sensitive to natural enzyme inhibitors. With the use of DNA microarrays, it is possible to identify large numbers of taxa on a single-glass slide, the so-called phylochip, which can be semi-quantitative. This review details the major steps in probe design, design and production of a phylochip and validation of the array. Finally, major microarray studies in the phytoplankton community are reviewed to demonstrate the scope of the method.
Resumo:
Abstract Molecular probe-based methods (Fluorescent in-situ hybridisation or FISH, Next Generation Sequencing or NGS) have proved successful in improving both the efficiency and accuracy of the identification of microorganisms, especially those that lack distinct morphological features, such as picoplankton. However, FISH methods have the major drawback that they can only identify one or just a few species at a time because of the reduced number of available fluorochromes that can be added to the probe. Although the length of sequence that can be obtained is continually improving, NGS still requires a great deal of handling time, its analysis time is still months and with a PCR step it will always be sensitive to natural enzyme inhibitors. With the use of DNA microarrays, it is possible to identify large numbers of taxa on a single-glass slide, the so-called phylochip, which can be semi-quantitative. This review details the major steps in probe design, design and production of a phylochip and validation of the array. Finally, major microarray studies in the phytoplankton community are reviewed to demonstrate the scope of the method.