12 resultados para Homozygosity mapping
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Front detection and aggregation techniques were applied to 300m resolution MERIS satellite ocean colour data for the first time, to describe frequently occurring shelf-sea fronts near to the Scottish coast. Medium resolution (1km) thermal and colour data have previously been used to analyse the distribution of surface fronts, though these cannot capture smaller frontal zones or those in close proximity to the coast, particularly where the coastline is convoluted. Seasonal frequent front maps, derived from both chlorophyll and SST data, revealed a number of key frontal zones, a subset of which were based on new insights into the sediment and plankton dynamics provided exclusively by the higher-resolution chlorophyll fronts. The methodology is described for applying colour and thermal front data to the task of identifying zones of ecological importance that could assist the process of defining marine protected areas. Each key frontal zone is analysed to describe its spatial and temporal extent and variability, and possible mechanisms. It is hoped that these tools can provide guidance on the dynamic habitats of marine fauna towards aspects of marine spatial planning and conservation.
Resumo:
Sabellaria spinulosa reefs are considered to be sensitive and of high conservation status. This article evaluates the feasibility of using remote sensing technology to delineate S. spinulosa reefs. S. spinulosa reef habitats associated with the Thanet Offshore Windfarm site were mapped using high resolution sidescan sonar (410 kHz) and multibeam echo sounder (<1 m2) data in 2005 (baseline), 2007 (pre-construction baseline) and 2012 (post-construction). The S. spinulosa reefs were identified in the acoustic data as areas of distinct irregular texturing. Maps created using acoustic data were validated using quantitative measures of reef quality, namely tube density (as a proxy for the density of live S. spinulosa), percentage cover of S. spinulosa structures (both living and dead) and associated macrofauna derived from seabed images taken across the development site. Statistically significant differences were observed in all physical measures of S. spinulosa as well the number (S) and diversity (H׳) of associated species, derived from seabed images classified according to the presence or absence of reef, validating the use of high resolution sidescan sonar to map these important biogenic habitats. High precision mapping in the early stages allowed for the micro-siting of wind turbines in a way that caused minimal damage to S. spinulosa reefs during construction. These habitats have since recovered and expanded in extent. The surveys undertaken at the Thanet Offshore Windfarm site demonstrate the importance of repeat mapping for this emerging industry, allowing habitat enhancement to be attributed to the development whilst preventing background habitat degradation from being wrongly attributed to the development.
Resumo:
The oceanographic drivers of marine vertebrate habitat use are poorly understood yet fundamental to our knowledge of marine ecosystem functioning. Here, we use composite front mapping and high-resolution GPS tracking to determine the significance of mesoscale oceanographic fronts as physical drivers of foraging habitat selection in northern gannets Morus bassanus. We tracked 66 breeding gannets from a Celtic Sea colony over 2 years and used residence time to identify area-restricted search (ARS) behaviour. Composite front maps identified thermal and chlorophyll-a mesoscale fronts at two different temporal scales—(i) contemporaneous fronts and (ii) seasonally persistent frontal zones. Using generalized additive models (GAMs), with generalized estimating equations (GEE-GAMs) to account for serial autocorrelation in tracking data, we found that gannets do not adjust their behaviour in response to contemporaneous fronts. However, ARS was more likely to occur within spatially predictable, seasonally persistent frontal zones (GAMs). Our results provide proof of concept that composite front mapping is a useful tool for studying the influence of oceanographic features on animal movements. Moreover, we highlight that frontal persistence is a crucial element of the formation of pelagic foraging hotspots for mobile marine vertebrates.
Resumo:
Front detection and aggregation techniques were applied to 300m resolution MERIS satellite ocean colour data for the first time, to describe frequently occurring shelf-sea fronts near to the Scottish coast. Medium resolution (1km) thermal and colour data have previously been used to analyse the distribution of surface fronts, though these cannot capture smaller frontal zones or those in close proximity to the coast, particularly where the coastline is convoluted. Seasonal frequent front maps, derived from both chlorophyll and SST data, revealed a number of key frontal zones, a subset of which were based on new insights into the sediment and plankton dynamics provided exclusively by the higher-resolution chlorophyll fronts. The methodology is described for applying colour and thermal front data to the task of identifying zones of ecological importance that could assist the process of defining marine protected areas. Each key frontal zone is analysed to describe its spatial and temporal extent and variability, and possible mechanisms. It is hoped that these tools can provide guidance on the dynamic habitats of marine fauna towards aspects of marine spatial planning and conservation.