15 resultados para Historical district
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
This document provides details of the transfer of the Norman Holme archive data held in the National Marine Biological Library onto a modern database, specifically Marine Recorder. A key part in the creation of the database was the retrieval of a large amount of information recorded in field notebooks and on loosely-bound sheets of paper. As this work involved amending, interpreting and updating the available information, it was felt that an accurate record of this process should exist to allow scientists of the future to be able to clearly link the modern database to the archive material. This document also provides details of external information sources that were used to enhance and qualify the historical interpretation, such as estimating volumes and species abundances.
Resumo:
The Continuous Plankton Recorder (CPR) survey has collected plankton samples from regular tracks across the world's oceans for almost 70 y. Over 299,000 spatially extensive CPR samples are archived and stored in buffered formalin. This CPR archive offers huge potential to study changes in marine communities using molecular data from a period when marine pollution, exploitation and global anthropogenic impact were much less pronounced. However, to harness the amount of data available within the CPR archive fully, it is necessary to improve techniques of larval identification, to genus and species preferably, and to obtain genetic information for historical studies of population ecology. To increase the potential of the CPR database this paper describes the first extraction, amplification by the polymerase chain reaction and utilization of a DNA sequence (mitochondrial 16S rDNA) from a CPR sample, a formalin fixed larval sandeel.
Resumo:
An historical data set, collected in 1958 by Southward and Crisp, was used as a baseline for detecting change in the abundances of species in the rocky intertidal of Ireland. In 2003, the abundances of each of 27 species was assessed using the same methodologies (ACFOR [which stands for the categories: abundant, common, frequent, occasional and rare] abundance scales) at 63 shores examined in the historical study. Comparison of the ACFOR data over a 45-year period, between the historical survey and re-survey, showed statistically significant changes in the abundances of 12 of the 27 species examined. Two species (one classed as northern and one introduced) increased significantly in abundance while ten species (five classed as northern, one classed as southern and four broadly distributed) decreased in abundance. The possible reasons for the changes in species abundances were assessed not only in the context of anthropogenic effects, such as climate change and commercial exploitation, but also of operator error. The error or differences recorded among operators (i.e. research scientists) when assessing species abundance using ACFOR categories was quantified on four shores. Significant change detected in three of the 12 species fell within the margin of operator error. This effect of operator may have also contributed to the results of no change in the other 15 species between the two census periods. It was not possible to determine the effect of operator on our results, which can increase the occurrence of a false positive (Type 1) or of a false negative (Type 2) outcome
Resumo:
Understanding how invasive species spread is of particular concern in the current era of globalisation and rapid environmental change. The occurrence of super-diffusive movements within the context of Lévy flights has been discussed with respect to particle physics, human movements, microzooplankton, disease spread in global epidemiology and animal foraging behaviour. Super-diffusive movements provide a theoretical explanation for the rapid spread of organisms and disease, but their applicability to empirical data on the historic spread of organisms has rarely been tested. This study focuses on the role of long-distance dispersal in the invasion dynamics of aquatic invasive species across three contrasting areas and spatial scales: open ocean (north-east Atlantic), enclosed sea (Mediterranean) and an island environment (Ireland). Study species included five freshwater plant species, Azolla filiculoides, Elodea canadensis, Lagarosiphon major, Elodea nuttallii and Lemna minuta; and ten species of marine algae, Asparagopsis armata, Antithamnionella elegans, Antithamnionella ternifolia, Codium fragile, Colpomenia peregrina, Caulerpa taxifolia, Dasysiphonia sp., Sargassum muticum, Undaria pinnatifida and Womersleyella setacea. A simulation model is constructed to show the validity of using historical data to reconstruct dispersal kernels. Lévy movement patterns similar to those previously observed in humans and wild animals are evident in the re-constructed dispersal pattern of invasive aquatic species. Such patterns may be widespread among invasive species and could be exacerbated by further development of trade networks, human travel and environmental change. These findings have implications for our ability to predict and manage future invasions, and improve our understanding of the potential for spread of organisms including infectious diseases, plant pests and genetically modified organisms.