10 resultados para Hirst

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review current knowledge and understanding of the biology and ecology of the calanoid copepod Calanus helgolandicus in European waters, as well as provide a collaborative synthesis of data from 18 laboratories and 26 sampling stations in areas distributed from the northern North Sea to the Aegean and Levantine Seas. This network of zooplankton time-series stations has enabled us to collect and synthesise seasonal and multi-annual data on abundance, body size, fecundity, hatching success and vertical distribution of C. helgolandicus. An aim was to enable comparison with its congener Calanus finmarchicus, which has been studied intensively as a key component of European and north east Atlantic marine ecosystems. C. finmarchicus is known to over-winter at depth, whereas the life-cycle of C. helgolandicus is less well understood. Overwintering populations of C. helgolandicus have been observed off the Atlantic coast between 400 and 800 m, while in the Mediterranean there is evidence of significant deep-water populations at depths as great as 4200 m. The biogeographical distribution of C. helgolandicus in European coastal waters covers a wide range of habitats, from open ocean to coastal environments, and its contribution to mesozooplankton biomass ranges from 6% to 93%. Highest abundances were recorded in the Adriatic and off the west coast of Spain. C. helgolandicus is generally found in 9-20 C water, with maximum abundances from 13-17 C. In contrast, C. finmarchicus is found in cooler water between 0 and 15 C, with peak abundances from 0 to 9 C. As water has warmed in the North Atlantic over recent decades, the range of C. helgolandicus and its abundance on the fringes of its expanding range have increased. This review will facilitate development of population models of C. helgolandicus. This will not only help answer remaining questions but will improve our ability to forecast future changes, in response to a warming climate, in the abundance and distribution of this important species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuous Plankton Recorder data suggest that the Irminger Sea supports a major proportion of the surface-living population of the copepod Calanus finmarchicus in the northern North Atlantic, but there have been few studies of its population dynamics in the region. In this paper, we document the seasonal changes in the demographic structure of C finmarchicus in the Irminger Sea from a field programme during 2001/2002, and the associations between its developmental stages and various apparent bio-physical zones. Overwintering stages were found widely at depth (>500 m) across the Irminger Sea, and surviving females were widely distributed in the surface waters the following spring. However, recruitment of the subsequent generation was concentrated around the fringes of the Irminger Sea basin, along the edges of the Irminger and East Greenland Currents, and not in the central basin. In late summer animals were found descending back to overwintering depths in the Central Irminger Sea. The key factors dictating this pattern of recruitment appear to be (a) the general circulation regime, (b) predation on eggs in the spring, possibly by the surviving GO stock, and (c) mortality of first feeding naupliar stages in the central basin where food concentrations appear to be low throughout the year. We compared the demographic patterns in 2001/2002 with observations from the only previous major survey in 1963 and with data from the Continuous Plankton Recorder (CPR) surveys. In both previous data sets, the basic structure of GO ascent from the central basin and G1 recruitment around the fringes was a robust feature, suggesting that it is a recurrent phenomenon. The Irminger Sea is a complex mixing zone between polar and Atlantic water masses, and it has also been identified as a site of sporadic deep convection. The physical oceanographic characteristics of the region are therefore potentially sensitive to climate fluctuations. Despite this, the abundance of C finmarchicus in the region, as measured by the CPR surveys, appears not to have responded to climate factors linked to the North Atlantic Oscillation Index, in contrast with the stocks in eastern Atlantic areas. We speculate that this may because biological factors (production and mortality), rather than transport processes are the key factors affecting the population dynamics in the Irminger Sea. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calanus helgolandicus is a key copepod of the NE Atlantic and fringing shelves, with a distribution that is expanding northwards with oceanic warming. The Plymouth L4 site has warmed over the past 25-years, and experiences large variations in the timing and availability of food for C. helgolandicus. Here we examine the degree to which these changes translate into variation in reproductive output and subsequently C. helgolandicus population size. Egg production rates (eggs female−1 day−1) were maximal in the spring to early-summer period of diatom blooms and high ciliate abundance, rather than during the equally large autumn blooms of autotrophic dinoflagellates. Egg hatch success was lower in spring however, with a greater proportion of naupliar deformities then also. Both the timing and the mean summer abundance of C. helgolandicus (CI–CVI) reflected those of spring total reproductive output. However this relationship was driven by inter-annual variability in female abundance and not that of egg production per female, which ranged only two-fold. Winter abundance of C. helgolandicus at L4 was much more variable than abundance in other seasons, and reflected conditions from the previous growing season. However, these low winter abundances had no clear carry-over signal to the following season’s population size. Overall, the C. helgolandicus population appears to be surprisingly resilient at this dynamic, inshore site, showing no long-term phenology shift and only a four-fold variation in mean abundance between years. This dampening effect may reflect a series of mortality sources, associated with the timing of stratification in the early part of the season, likely affecting egg sinking and loss, plus intense, density-dependent mortality of early stages in mid-summer likely through predation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We assess the causes of adult sex ratio skew in marine pelagic copepods by examining changes in these ratios between the juveniles and adults, sexual differences in juvenile stage durations, and mortality rates of adults in the field and laboratory (when free from predators). In the field, late copepodite stages (CIV and CV) commonly have sex ratios that are either not significantly different from equity (1 : 1), or slightly male biased. By contrast, in adults, these ratios are commonly significantly biased toward female dominance. Sex ratio skews are therefore primarily attributable to processes in adults. Members of the non-Diaptomoidea have especially skewed adult ratios; in the members Oithonidae and Clausocalanidae this is not generated from differences between male and female adult physiological longevity (i.e., laboratory longevity when free of predators). In the genera Acartia, Oithona, and Pseudocalanus, we estimate that predation mortality contributed ≥ 69% of the field mortality rate in adult males, whereas in Acartia, Oithona, and Calanus adult females, this is ≥ 36%.We conclude that (1) adult sex ratio skew in pelagic copepods is primarily due to differential mortality of the sexes in the adult stage and not in juveniles, (2) mortality rates of adult Acartia, Pseudocalanus, and Oithona are dominated by predation mortality rather than physiological longevity (except under extreme food limitation), and (3) in Pseudocalanus and Oithona, elevated mortality rates in adult males to females is predominantly due to higher predation on males. Our work demonstrates that we now need to develop a more comprehensive understanding of the importance of feeding preferences in predators. Continue reading full article

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gusmão et al. (2013; Mar Ecol Prog Ser 482:279-298) review causes of sex ratio skew in pelagic copepods and in doing so repeatedly dispute the paper of Hirst et al. (2010) ‘Does predation control adult sex ratios and longevities in marine pelagic copepods?’ Here we respond to some important errors in their citation of our paper and briefly highlight where future work is needed in order to attribute the causes of strong sex ratio skew seen in some copepod families.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs); six types of phytoplankton, three types of zooplankton, and heterotrophic bacteria. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing zooplankton, and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean High Nutrient Low Chlorophyll (HNLC) region during summer. When model simulations do not represent crustacean macrozooplankton grazing, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there was no iron deposition from dust. When model simulations included the developments of the zooplankton component, the simulation of phytoplankton biomass improved and the high chlorophyll summer bias in the Southern Ocean HNLC region largely disappeared. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community rather than iron limitation. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.